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Preface

Developments in ASReml Release 4

There are a number of new developments in Release 4. These are described in Chapter 1.
Developments associated with input include generating initial values, generating a template
to allow an alternative way of presenting parametric information associated with variance
structures, new facilities for reading in data files and defining factor names and improved
facilities for reading relationship matrices. Among the developments associated with analy-
sis are making it easier to specify functions of variance parameters using names rather than
numbers, fitting factor effects with large random regression models, such as commonly used
with marker data, fitting linear relationships among variance structure parameters and cal-
culating information criteria. The developments associated with output include writing out
design matrices.

New model specification using a functional approach

The main development in ASReml Release 4 is a new model specification using a functional
approach. Prior to Release 4 a structural specification was used in which variance models
were applied by imposing variance structures on random model terms and/or the residual
error term after the mixed model had been specified. In this case, the variance models were
presented in a separate part of the input file. The functional specification offers a simpler
alternative to the structural specification in which the variance structures for random model
terms and the residual error term are specified in the linear mixed model definition by
wrapping terms with the required variance model function. This functional approach is more
concise, less error-prone and more automatic for specifying multi-section residual variances.

The functional model specification has been developed from the model implementation of
ASReml-R and offers a more seamless movement between platforms. A complete discussion
of the functional specification, with reference to the structural specification, is presented in
Chapter 2. Chapter 3 takes examples from the User Guide and compares the functional and
structural specifications.
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Who should read this document?

This document is for existing users who wish to keep abreast of the developments with
Release 4. Chapter 2 is primarily for existing users who wish to migrate to the functional
model specification. Users who are new to ASReml with Release 4 are referred to the ASReml
User Guide for this version.
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1 Developments in ASReml Release 4

This chapter is a summary of the developments in Release 4 associated with

• input (Section 1.1) including the generation of initial values, the generation of a template
to allow an alternative way of presenting parametric information associated with variance
structures and improved facilities for reading relationship matrices

• analysis (Section 1.2) including making it easier to specify functions of variance parame-
ters using names rather than numbers, fitting factor effects with large random regression
models,such as commonly used with marker data, fitting linear relationships among vari-
ance structure parameters and calculating information criteria

• output (Section 1.3) including writing out design matrices.

Another development is the implementation of an alternative way of specifying the mixed
model. The distinguishing feature of this specification is that the variance models for indi-
vidual terms are specified by applying variance model functions to the terms in the model
definition line(s). This is in contrast to the structural specification of versions prior to Release
4 in which the variance models were only imposed after the mixed model definition line(s).
Some users might find this functional specification more natural and less error prone. There
is a comprehensive discussion of the specification in Chapter 2 and Chapter 3 compares the
structural and functional specifications for a range of User Guide examples.

1.1 Improvements to input

1.1.1 Generating initial values for variance structure parameters

In ASReml 3 it was necessary to supply initial values for variance structure parameters
except for the default variance structure for a random model term, where the default initial
variance (ratio) parameter value was 0.1. In ASReml 4, it is not generally necessary to
supply initial values. In this release, if the user uses * instead of the initial value(s) then
ASReml provides initial values for variance structure parameters based on knowledge of the
phenotypic variance of the response. Occasionally these initial values are not adequate and
more appropriate values will need to be supplied by the user, perhaps using prior information
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1.1 Improvements to input

or results from a simplified analysis.

1.1.2 Using templates to set parametric information associated with
variance structures using .tsv and .msv files

ASReml 3 needed initial values for most variance structure parameters and allowed specifi-
cation of parametric constraints and relationships (equality and scale) between parameters
to be defined. This parametric information was interspersed within the structure definition.
Release 4 allows an alternative way of specifying this parametric information, essentially con-
structing a table in a .tsv file, with the rows labelled by the specific parameters, columns
for initial values and parametric constraints, and two columns that allow specification of
relationships. This .tsv file is written by ASReml after the input file has been parsed; using
* to represent initial values and setting !MAXITER 0 for an easy construction.Once the .tsv

file has been edited it can be read by inserting !TSV on the data file line. As an example

Wolfinger Rat data

treat !A

wt0 wt1 wt2 wt3 wt4

subject * !=V0

wolfrat.dat !skip 1 !ASUV !MAXITER 0

wt0 wt1 wt2 wt3 wt4 Trait treat Trait.treat

1 2 0

27 0 ID #error variance

Trait 0 US * #* indicates generates initial values

generates a .tsv file.

# This .tsv file is a mechanism for resetting initial parameter values

# by changing the values here and rerunning the job with !TSV

# You may only change values in the last 4 fields.

# Fields are:

# GN, Term, Type, PSpace, Initial value, RP GN, RP scale.

5, "units.us(Trait);us(Trait) 1", G, P, 4.7911110 , 5, 1

6, "units.us(Trait);us(Trait) 2", G, P, 5.0231481 , 6, 1

7, "units.us(Trait);us(Trait) 3", G, P, 15.298889 , 7, 1

8, "units.us(Trait);us(Trait) 4", G, P, 4.8438271 , 8, 1

9, "units.us(Trait);us(Trait) 5", G, P, 11.264815 , 9, 1

10, "units.us(Trait);us(Trait) 6", G, P, 26.095692 , 10, 1

11, "units.us(Trait);us(Trait) 7", G, P, 4.6882715 , 11, 1

12, "units.us(Trait);us(Trait) 8", G, P, 10.824074 , 12, 1

13, "units.us(Trait);us(Trait) 9", G, P, 27.332887 , 13, 1

14, "units.us(Trait);us(Trait) 10", G, P, 71.875403 , 14, 1

15, "units.us(Trait);us(Trait) 11", G, P, 3.9083333 , 15, 1

16, "units.us(Trait);us(Trait) 12", G, P, 10.292592 , 16, 1

2



1.1 Improvements to input

17, "units.us(Trait);us(Trait) 13", G, P, 34.137962 , 17, 1

18, "units.us(Trait);us(Trait) 14", G, P, 69.287036 , 18, 1

19, "units.us(Trait);us(Trait) 15", G, P, 141.97296 , 19, 1

Parameter constraints and initial values can be changed by editing the values in the PSpace

and Initial value columns. Scale relationships can be introduced by noting that the full
set of parameters can be related to a subset of parameters and scale factors such as

parameter = subset parameter * scale

or

GN column parameter, RP GN column parameter * RP scale value

where GN, RP GN and RP scale are columns in the .tsv file. The relationships generated by

VCC 2

5 6 8 11 15 7 * 2 9 * 2 12 * 2 16 * 2 #parameters 6 8 11 15 are equal to 5

#7 9 12 16 are twice 5

10 13 17 #parameters 13 and 17 are equal to 10

#the full set of parameters 5-19 can therefore be expressed in terms of the subset parameters

5, 10 ,14, 18 and 19

can be introduced by editing the RN GN and RP scale columns. Some users would prefer to
insert initial values into this .tsv file under the Initial value column. As an example, the
file below contains values based on using 4.8, 26, 70, 35 and 70 for parameters 5, 10, 14, 18
and 19. The data values in the .tsv file become

# GN, Term, Type, PSpace, Initial value, RP GN, RP scale.

5, "units.us(Trait);us(Trait) 1", G, P, 4.8 , 5, 1.0000

6, "units.us(Trait);us(Trait) 2", G, P, 4.8 , 5, 1.0000

7, "units.us(Trait);us(Trait) 3", G, P, 9.6 , 5, 2.0000

8, "units.us(Trait);us(Trait) 4", G, P, 4.8 , 5, 1.0000

9, "units.us(Trait);us(Trait) 5", G, P, 9.6 , 5, 2.0000

10, "units.us(Trait);us(Trait) 6", G, P, 26 ,10, 1.0000

11, "units.us(Trait);us(Trait) 7", G, P, 4.8 , 5, 1.0000

12, "units.us(Trait);us(Trait) 8", G, P, 9.6 , 5, 2.0000

13, "units.us(Trait);us(Trait) 9", G, P, 26 , 10, 1.0000

14, "units.us(Trait);us(Trait) 10", G, P, 70 , 14, 1.0000

15, "units.us(Trait);us(Trait) 11", G, P, 4.8 , 5, 1.0000

16, "units.us(Trait);us(Trait) 12", G, P, 9.6 , 5, 2.0000

17, "units.us(Trait);us(Trait) 13", G, P, 26 , 10, 1.0000

18, "units.us(Trait);us(Trait) 14", G, P, 35 , 18, 1.0000

19, "units.us(Trait);us(Trait) 15", G, P, 70 , 19, 1.0000

Sometimes users wish to rerun a job making changes to the final values, parametric con-
straints and relationships (equality and scale) between parameters. A file .msv is produced,
similar to .tsv but containing final values that can be edited and used with !MSV. If !TSV

3



1.1 Improvements to input

(or !MSV) is specified ASReml will read the current (created with the same PART number)
.tsv (or .msv) file. If there is no current .tsv (or .msv file), a non-current (produced from
a different PART of the same job) .tsv (or .msv) file will be read.

Alternative ways of specifying !TSV and !MSV are !CONTINUE 2 and !CONTINUE 3 and these
qualifiers can be used as options on the command line as -C2 and -C3. Note that the
constraints in the .tsv/.msv files take precedence over those in the .as file.

If f=filename, with no extension, is used with !CONTINUE, !TSV or !MSV, ASReml will use
the file f.rsv, f.tsv or f.msv. If f=filename.xsv with x=r, t or m is used with !CONTINUE,
!TSV or !MSV, ASReml will use the file f.xsv. If the specified file is not present, ASReml
reverts to reading the previous .rsv file.

1.1.3 Skipping fields during data input

The meaning of the !SKIP n qualifier differs with context. It is most commonly specified
after the name of a pedigree or data file to instruct ASReml to ignore the first n lines of the
file (presumably heading lines). !SKIP can also be used to skip columns when reading in a
data file. For example,

A !SKIP 1 B

instructs ASReml to skip 1 data field before reading the field to be labelled A.

A new qualifier, !CSKIP c, is now available to skip data fields (columns) when reading the
data. It is an alternative to !SKIP n but is more logically placed. For example,

!CSKIP 1 A B

does the same as the above !SKIP command, that is, skips the first data field and reads the
second and third data fields into variables A and B. Likewise,

!CSKIP n A B

skips the first n data fields and reads the next two fields into variables A and B.

We suggest using !CSKIP in preference to !SKIP for skipping data fields.

1.1.4 Setting the order of alphanumeric factor levels

An !L qualifier associated with the !A qualifier was available in Release 3 and pre-declared
the levels of alphanumeric factors and their order. ASReml will now accept a filename
argument where the first field of each line of the file contains the names of the levels. If the
filename has Identity as the first name on the first line, the first line is ignored. The #

character is treated as the beginning of a comment; the # itself and the following characters
are ignored, as are blank lines. Consequently, a level label may not contain the character #.
If the filename includes embedded blanks, or has no file extension, it must be enclosed in
quotes:

4



1.1 Improvements to input

Genotype !A !L MyNames.txt

Genotype !A !L ’My Names.txt’

Genotype !A !L ’MyNames’

When actually reading the data, any label that is not already defined is appended to the list
when it is encountered. One use of this qualifier is to ensure that the data is coded according
to the order of the identities (ID’s) used when forming .grm or .giv files; supplying the order
in a text file. For example, if the file Idnames.txt contains the list and has 1 header line,
define ID as

ID !A 450 !L Idnames.txt !SKIP 1

where 450 is the number of levels. Note that in this context of defining a label file, ASReml
interprets !SKIP as skipping a line rather than a column (field) in the names file. Refer to
the User Guide for information on data file types.

1.1.5 Extra facilities for reading relationship matrix (including GRM)
files

New model names

In previous releases of ASReml, a pedigree file could be associated with a factor, and a numer-
ator relationship matrix was generated and could be used as a variance structure. Slightly
illogically, this structure was specified in models using AINV (Additive Inverse Matrix). Sim-
ilarly, generalised relationship matrices (grm) or their inverses (giv) could be read in and
giv() and GIV could be used in the model specification. In Release 4, ASReml allows the
use of NRM as a synonym for AINV and the use of nrm(f) on the model line. Furthermore,
GRMn and grmn(f) can be used as synonyms for GIVn and giv(f,n) respectively, where f is
the model term variable to which the structure is applied and n is the ordinal number of the
GIV/GRM matrix being associated with f.

GRM files

GRM and GIV files will be read assuming single/double precision lower triangle row-wise
binary format if the file extension is .sgiv, .dgiv, .sgrm or .dgrm.

!PRECISION n changes the value used to declare a singularity when inverting a GRM file from
1D-7 to 1D-n.

!SAVEGIV on the GRM line has been extended to

!SAVEGIV 3 which writes the GIV matrix as an .sgiv file, or

!SAVEGIV 4 which writes the GIV matrix as a .dgiv file, where .sgiv is single precision lower
triangle row-wise binary and .dgiv is double precision lower triangle row-wise binary.

Diagnostics when processing GRM files have been improved. ASReml now tests the GRM
matrix and reports if it is not positive definite. In this case, 3 qualifiers may be used to

5



1.1 Improvements to input

allow ASReml to proceed. If the matrix has positive and negative eigenvalues, !ND instructs
ASReml to ignore the condition and proceed anyway. If the matrix is positive semi-definite
(positive and zero eigenvalues), !PSD allows ASReml to introduce Lagrangian multipliers
to accommodate linear dependencies and rows with zero elements, and allows ASReml to
proceed. Linear dependencies occur, for example, when the list of individuals includes clones.
Rows with zero elements occur when the GRM represents a dominance matrix, and the list
of individuals includes fully inbred individuals which, by definition, have zero dominance
variance. If the matrix has positive, zero and negative eigenvalues, !NSD may be used to
allow ASReml to continue. The zero eigenvalues are handled as for !PSD.

Another example of !L (Section 1.1.4) is in analysis on data with 2 relationship matrices
based on two separate pedigrees. ASReml only allows one pedigree file to be specified but
can create an inverse relationship matrix and store the result in a GIV file. So, 2 relationship
matrices based on two separate pedigrees may be used by generating a GIV file from one
pedigree and then using that GIV file and the other pedigree in a subsequent run. To process
the GIV file properly, we must also generate a file with identities as required for the GIV
matrix. An example of this is if the file Hybrid.as includes

!PART 1

Mline !P

Fline !A

...

Mline.ped !GIV !DIAG #!GIV generates the file Hybrid1A.giv and !DIAG

#generates Hybrid1.aif which contains the identifier names

!PART 2 #reads in inverse additive relationship matrix generated in !PART 1

Mline !A !L Hybrid1.aif !SKIP 1#associates identifier names with levels of Mline

#used in giv file

Fline !P

...

Fline.ped !GIV !DIAG

Hybrid1 A.giv #formed in part 1 from Mline.ped

Hybrid.asd !SKIP 1

...

... grm1(Mline) nrm(Fline) #using new synonyms and functions

1.1.6 Handling the # character in data files

The general (data line) qualifier !SPECIALCHAR causes # to be treated as an ordinary char-
acter in the data file, rather than to have its usual meaning, that is, to ignore the rest of the
input line. ASReml generates a warning message when the # character appears in the data
file and !SPECIALCHAR has not been used.
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1.2 Improvements to analysis

1.1.7 Extension to the !FILTER qualifier

The !FILTER f qualifier is used with the !SELECT s qualifier to select only the data records
that have the value s in field f. This has been extended by addition of the qualifier !EXCLUDE
e to ignore all data records that do have the value e in field f.

1.1.8 Using binary MBF files

The !MBF statement extracts covariate values corresponding to levels of a factor from an
auxiliary file. This file may now be a binary format file, with file extension .bin indicating
32bit real binary numbers and .dbl indicating 64bit real binary values. Files with these
formats can be easily created in a preliminary run using the !SAVE qualifier. The advantage
of using a binary file is that reading the file is much quicker. This is important if the file has
many fields and is being accessed repeatedly, for example

!CYCLE 1:1000

!MBF mbf(Geno) markers.dbl !key 1 !RFIELD $I !rename M$I

... !r M$I

1.2 Improvements to analysis

1.2.1 Fitting linear relationships among variance structure parameters

The user may wish to define relationships between particular variance parameters. For
example, consider an experiment in which two or more separate trials are sown adjacent to
one another at the same trial site, with trials sharing a common plot boundary. In this case it
might be sensible to fit the same spatial parameters and error variances for each trial. In other
situations it can be sensible to define the same variance structure over several model terms.
ASReml 3 catered for equality and multiplicative relationships among variance parameters.
In ASReml 4 linear relationships among variance structure parameters can be defined through
a simple linear model and by supplying a design matrix for a set of parameters. The design
matrix is supplied as an ascii file containing a row for each parameter in a set of contiguous
parameters and a column for each new parameter. This design matrix is associated with the
job through a statement after the residual model definition line(s), of the form:

VCM first [intermediate] last new filename

where first is the parameter number of the first parameter in the set, intermediate is required
unless all the intermediate parameters are involved, last is the parameter number of the last
parameter in the set, new is the number of new parameters
filename is the name of the file containing the design matrix.

For example, the Wolfinger rats example involves modelling a 5×5 symmetric residual ma-
trix.
Wolfinger Rat data

treat !A
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1.2 Improvements to analysis

wt0 wt1 wt2 wt3 wt4

subject * !=V0

wolfrat.dat !skip 1

wt0 wt1 wt2 wt3 wt4 ∼ Trait treat Trait.treat

1 2 0

27 0 ID #error variance

Trait 0 US * #* indicates generates initial values

#uses 15 parameters numbered 5-19 generating symmetric matrix

#5

#6 7

#8 9 10

#11 12 13 14

#15 16 17 18 19

Wolfinger (1996) reports the fitting of the HuynhFeldt variance structure to this data. This
structure is of the form

σii = σni

σij = 1/2 (σni + σnj)− σno j < i ≤ p

In the rats example, the relationship between the original and new parameters is σ = Mσn
where σ and σn are 15× 1 and 6× 1 vectors respectively, and M is a 15× 6 matrix:

1 0 0 0 0 0

0.5 0.5 0 0 0 -1

0 1 0 0 0 0

0.5 0 0.5 0 0 -1

0 0.5 0.5 0 0 -1

0 0 1 0 0 0

0.5 0 0 0.5 0 -1

0 0.5 0 0.5 0 -1

0 0 0.5 0.5 0 -1

0 0 0 1 0 0

0.5 0 0 0 0.5 -1

0 0.5 0 0 0.5 -1

0 0 0.5 0 0.5 -1

0 0 0 0.5 0.5 -1

0 0 0 0 1 0

A way of fitting this model would be to put the matrix values in a file HuynhFeldt.vcm and
replace the G Trait specification by

Trait 0 US !GU

45 20 45 20 20 45 20 20 20 45 20 20 20 20 45

#Supply start values because raw SSP generates bad initial values

#for HuynhFeldt structure because it does not fit well
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1.2 Improvements to analysis

VCM 5 19 6 HuynhFeldt.vcm #parameters 5 to 19 explained in terms of 6 parameters

Note that if the user fits another model with differing numbers of variance structure param-
eters so that the variance structure parameters are renumbered, then all the user needs to
do to continue with the same relationships is to change the first and last parameters on the
VCM line.

Important The VCM statement must be placed after any residual definition line(s).

1.2.2 Data order, filling in the spatial grid

In Release 3, the qualifiers !SECTION, !ROWFACTOR and !COLUMNFACTOR in combination with
an appropriate Variance header line, generated an AR1×AR1 variance structure for each
section. That is, it created the internal structures to fit this model and wrote the lines which
specified this structure to the .res so that they could be pasted into a revised .as file.

However, to fit this model, it is necessary that the complete grid of plots be represented in
the data file, even though some of them may be missing a yield response. In ASReml 4, if
these qualifiers are specified and the model term mv is fitted, ASReml will sort the data on
the three fields specified and insert ’missing value’ records to complete the row/column grid
for each section.

1.2.3 Information criteria

For comparing nested models we recommend the REML likelihood ratio test (REMLRT), see
Section 2.5 of the User Guide. The Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) are defined in equation 2.15 of the User Guide. The AIC and BIC
are provided for the convenience of users but without any formal recommendation for their
use. The number of parameters includes the number of linear parameters estimated and the
number of variance structure parameters estimated, excluding variance parameters fixed at
a boundary during the estimation procedure. The value used in calculating AIC and BIC is
reported, giving the opportunity for the user to verify/modify this number.

All of these statistics are based on the REML log-likelihood statistics and are only valid if
the fixed effects model is unchanged between runs and is fitted in the same order (ie. the
same effects are aliased in the case where the model is over-parameterized).

1.2.4 Conditional coding

The facilities for manipulating job coding have been extended with the high level qualifiers
in Table 1.1. These are high level in the sense that they can appear at any point in the
command file, provided the result can be formed at that point.

9



1.2 Improvements to analysis

1.2.5 Processing random terms as DENSE

ASReml uses link list matrix methods for the sparse equations and has always included
random model terms in these sparse equations. However, in the case of GRM matrices,
they are typically quite large (several thousand) and dense, and it would be more efficient
generally to process them as such. Release 4 has a !GDENSE qualifier (set just before the
model line). If !GDENSE is set and the first random term is a GRM term, its equations will be
processed as DENSE. For an example with 3226 rows in the GRM matrix, !GDENSE reduced
the iteration time from 196 to 175 seconds.

Table 1.1: High level qualifiers

qualifier action

!ASSIGN list An !ASSIGN string qualifier has been added to extend coding options. It is
a high level qualifier command which may appear anywhere in the job. Each
occurrence of !ASSIGN must start on its own input line.
The syntax is

!ASSIGN name string

or

!ASSIGN name !< string !>

and the defined string is substituted into the job where $name appears. string
is the rest of the line and may include blanks. If !< !> encloses string, string
may extend over several lines, which are concatenated.
For example

!ASSIGN TVS xfa1(Treat)

...

... $TVS.geno ...

is interpreted as
... xfa1(Treat).geno ...

Restrictions:

• a maximum of 50 assign strings may be defined.

• the combined length of all strings is 5000 characters.

• name may have up to 8 characters but should not begin with a number
(see command line arguments).

• dollar substitution occurs before most other high level actions. ASSIGN
strings and commandline arguments may substitute into a !CYCLE line.

• I, J, K and L are reserved as names referring to items in the !CYCLE list
and should therefore not be used as names of an ASSIGN string.

!CYCLE [!SAMEDATA]

list

There is now an extra qualifier with !CYCLE, !SAMEDATA. Putting
!SAMEDATA on the (leading) !CYCLE line makes ASReml read the data (and
.grr) file in the first CYCLE and hold it in memory for use in subsequent
cycles. This is advantageous when the data/.grr file is large and there
are many CYCLEs to execute where the model changes, but the data/.grr
file doesn’t.
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1.2 Improvements to analysis

High level qualifiers

qualifier action

!FOR forlist !DO

command

The !FOR ... !DO ... command is intended to simplify coding when a
series of similar lines are required in the command file which differ in a single
argument. The list of arguments is placed after !FOR and the command is
written after !DO with $S indicating where the argument is to be inserted. list
may be an assign string since they are processed before the !FOR statement is
expanded. Furthermore, if list is entirely integer numbers, i:j notation can be
used.

For example
!ASSIGN Markern 35 75 125

!ASSIGN Markers M35 M75 M125

!FOR $Markern !DO !MBF mbf(Geno,1) markers.csv !key 1 !RFIELD$S !RENAME M$S

... ... !r $Markers

is expanded to
!MBF mbf(Geno,1) markers.csv !key 1 !RFIELD 35 !RENAME M35

!MBF mbf(Geno,1) markers.csv !key 1 !RFIELD 75 !RENAME M75

!MBF mbf(Geno,1) markers.csv !key 1 !RFIELD 125 !RENAME M125

... ... !r M35 M75 M125

The aim here is to generate the 3 !MBF statements required to extract markers
35, 75 and 125 from the marker file markers.csv. The names of model terms
must begin with a letter, hence the marker names are the letter M followed
by the position number. Alternatively !RFIELDlettersinteger is interpreted as
!RFIELD integer so the !FOR statement can be written even more concisely as

!FOR $Markers !DO !MBF mbf(Geno,1) markers.csv !key 1 !RFIELD$S !RENAME M$S

without the need to assign Markern. Now, to add another marker to the
model, one can just add the marker integer to the ASSIGN statement.

Restriction: list and command are both limited to 200 characters.

!IF string1 ==

string2 text

One form of the IF statement is
!IF string1 == string2 !ASSIGN M1 brt DamAge which makes the
!ASSIGN statement active if string1 is the same as string2. Note that there
need to be spaces before and after == to avoid confusion with the strings. This
has been used when performing a large number of bivariate analyses with trait
specific fixed effects being fitted. So
...

!IF $1 == wwt !ASSIGN M1 brt DamAge

!IF $1 == ywt !ASSIGN M1 brt

!IF $1 == fwt !ASSIGN M1 DamAge

!IF $2 == wwt !ASSIGN M2 brt DamAge

!IF $2 == ywt !ASSIGN M2 brt

!IF $2 == fwt !ASSIGN M2 DamAge

...

$1 $2 ∼ Trait at(Trait,1).($M1) at(Trait,2).($M2)
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1.2 Improvements to analysis

1.2.6 Factor effects with large Random Regression models

One use of the GRM matrix is to allow more computationally efficient fitting of random
regression models associating u, a vector of f factor effects with v a vector of m regression
effects through the model u = Mv where the matrix M contains m regressor variables for
each of the f levels of the factor. Direct fitting of the regression effects is facilitated by using
the my basis function (mbf function) associating the regressor variables to the levels of the
factor, essentially fitting ZMv where Z is the design matrix linking observations to the
levels of the factor. But if m is much bigger than f , it is more computational efficient to fit
an equivalent model Zu with a variance structure for u based on MM ′. ASReml can read
the matrix M associated with a factor and group of regressor variables from a .grr file,
construct a GRM matrix (G = MM ′/s with s a scale parameter), fit the equivalent model
and report both factor and regressor predictions. One common case of this model is when
u represents genotype effects, the regressors represent SNP marker counts (typically 0/1/2
representing allelle counts and 0 and 2 representing homozygotes) and v are marker effects.

The .grr file is specified after any pedigree file and before the data file (with any other GRM
files). There may only be one .grr file. It is assumed to contain a row for each level of the
factor, each row containing m regressor values. Optionally the factor level name associated
with the i-th row can be included before the relevant regressor values. Also a heading row
might include a name for each field/regressor variable. Superfluous fields before the factor
or regressor fields can be skipped and superfluous rows before the regressor information can
be skipped.

The syntax for specifying and reading the .grr file is

M.grr [!CSKIP c1] Factor [f] [!NOID] [!CSKIP c2] Regressors [m] [!NONAMES] [!SKIP

s] where

M.grr is the name of the file to be read, !CSKIP c1 indicates c1 fields are to be skipped

before the factor identifiers are read,

Factor is the name of the variable in the data that is associated with the regressors,

f sets the maximum number of levels (default 1000) of Factor with regressor data; ASReml
will count the actual number,

!NOID indicates that the factor identifiers are not present in the .grr file,

!CSKIP c2 indicates c2 fields are to be skipped before the regressor variables are read,

Regressors is the name for the set of regressor variables,

m sets the number of regressor variables (default is the number of names found); must be
set if there are extraneous fields to be ignored,

!SKIP s specifies how many lines are to be skipped before reading the regressor data,

!NONAMES indicates there is no line containing the individual names of the regressor variables;
otherwise names are taken from the first (non-skipped) line in the file.
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1.2 Improvements to analysis

If the factor identifiers are not present (!NOID), ASReml assumes that the order of the
factor classes in the data file matches the order in the .grr file. If the factor identifiers are
present, ASReml uses the identifiers obtained from the .grr file to define the order of the
factor classes when the data is read; any extra identifiers in the data not in the .grr file are
appended at the end of the factor level name list. If !NOID is set, identifiers in the .grr file
are not needed and if present should be skipped using !CSKIP.

Values are typically TAB, COMMA or SPACE separated but may be packed (no separator) when
all values are integers 0/1/2. Missing values in the regression variables may be represented
by *, NA. Invalid data is also treated as missing. Missing values are replaced by the mean
of the respective regressor. Alternative missing data methods that involve imputation from
neighbouring markers have not been implemented.

Some general qualifiers are:
!SAVEGIV instructs ASReml to write the G matrix in .dgiv format,
!PSD s declares that the derived variance matrix may have up to s singularities,
!PEV requests calculation of Prediction Error Variance of marker effects which are reported in
the .mef file. Calculation of prediction error variances was computationally very expensive.
The algorithm has been drastically improved and now the recommendation is to always use
!PEV.
!CENTRE [c] requests ASReml to centre the regressors at c if c is specified else at the individual
regressor means; otherwise the G matrix is formed from uncentered regressors. Note that
centring introduces a singularity in the G matrix and !PSV s will need to be set.

Other qualifiers relate specifically to whether the regressors are markers. Markers are typi-
cally coded 0/1/2 being counts of the minor allele. However, if they are imputed, they will
take real values between 0 and 2. Since marker files may be huge,
!SMODE b sets the storage mode for the regressor data, indicating whether it is marker data:
b = 2 sets 2bit storage for strictly 0/1/2 marker data, b = 8 (the default) sets 8bit storage
useful for marker data with imputed values having 2 digits after the decimal, b = 16 sets
16bit storage useful for marker data with imputation with more than 2 digits and b = 32
sets 32bit real storage and should be used for non-marker data,
!RANGE l h indicates the marker scores range l : h and are to be transformed to have a range
0:2,
!GSCALE s, controls the scaling of the GRM matrix. If unspecified s = Σ2p(1 − p) is used
for marker data, s = 1 for non marker data (!SMODE 32). Scaling is often used with centred
marker data to scale the MM ′ matrix so that it is a genomic relationship matrix.

Example
!WORK 1

Nassau Clone Data

Nfam 71 !A

Nfemale 26 !A

Nmale 37 !A
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Clone !A 860

rep 8 !A

iblk 80 !A

tree

row

col

prop 1 !A

culture 2 !A

treat 2 !A

measure 1 !A

SURV

DBH6

HT6

HT8

CWAC6 !M-9

snpData.grr Clone !SKIP 1 !HEAD 0 !CENTRE !MARKERS 4854 !IDS 923 !PEV

nassau cut v3.csv !MAXIT 30 !SKIP 1 !GDENSE !PEV

HT6 ∼ mu culture culture.rep !r grm1(Clone) Clone rep.iblk

where snpData.grr is first used to declare Clone identifiers (taken from the first field) in
the correct order, and then contains the marker scores; it looks like
Genotype,0-10024-01-114,0-10037-01-257,0-10040-02-394,...

140099,2,2,1,2,2,2,2,2,2,1,2,1,2,1,1,2,1,2,2,2,2,2,1,2...

141099,2,2,0,0,2,2,1,2,2,1,2,1,2,2,0,2,2,2,2,1,2,2,1,1...

...

547853,2,2,1,2,2,2,1,2,2,0,2,1,2,2,2,2,2,2,2,1,2,...

547966,2,2,1,1,1,2,0,2,2,1,2,2,2,2,2,2,2,2,2,1,2,...

548082,2,2,1,2,2,2,1,2,1,2,2,1,2,2,1,2,2,2,2,1,2,...

The primary output follows:

Nfam 71 !A

Nfemale 26 !A

Nmale 37 !A

Clone !A 860

MatOrder 914 !A

rep 8 !A

iblk 80 !A

prop 1 !A

culture 2 !A

treat 2 !A

measure 1 !A

CWAC6 !M-9

Parsing: snpData.grr Clone !SKIP 1 !HEAD 0 !CENTRE !IDS 923 !PEV
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Class names for factor "Clone" are initialized from the .grr file.

Notice: SNP data line begins: 140099,2,2,1,2,2,2,2,2,2,1,2,1,2,1,1,

Notice: Markers coded -9 treated as missing.

Marker data [0/1/2] for 923 genotypes and 4854 markers read from snpData.grr

160414 missing Regressor values ( 3.6%) replaced by column average!

Regressor values ranged 0.00 to 2.00

Regressor Means ranged 1.00 to 2.00

Regressors centered at their respective means

Sigma2p(1-p) is 1057.12558

GIV1 snpData.grr 923 9 -963.89

QUALIFIERS: !MAXIT 30 !SKIP 1 !GDENSE

QUALIFIER: !DOPART 3 is active

Reading nassau_cut_v3.csv FREE FORMAT skipping 1 lines

Univariate analysis of HT6

Summary of 6399 records retained of 6795 read

Model term Size #miss #zero MinNon0 Mean MaxNon0 StndDevn

1 Nfam 71 0 0 1 36.3379 71

2 Nfemale 26 0 0 1 12.8823 26

3 Nmale 37 0 0 1 15.2285 37

Warning: More levels found in Clone than specified

4 Clone 926 0 0 1 464.6765 926

Warning: Fewer levels found in MatOrder than specified

5 MatOrder 914 0 0 1 432.5760 860

6 rep 8 0 0 1 4.4837 8

7 iblk 80 0 0 1 40.1164 80

8 tree 0 0 1.0000 7.473 14.00 4.018

9 row 0 0 1.0000 28.52 56.00 16.09

10 col 0 0 1.0000 10.50 20.00 5.760

Warning: Fewer levels found in prop than specified

11 prop 2 0 0 1 1.0000 1

12 culture 2 0 0 1 1.4945 2

13 treat 2 0 0 1 1.4945 2

Warning: Fewer levels found in measure than specified

14 measure 2 0 0 1 1.0000 1

15 SURV 0 6 1.0000 0.9991 1.0000 0.3061E-01

16 DBH6 4 0 0.3000E-01 11.29 18.80 2.400

17 HT6 Variate 0 0 76.20 838.6 1286. 163.6

18 HT8 83 0 91.44 1148. 1576. 170.6

19 CWAC6 3167 0 97.54 301.3 542.5 52.26

20 mu 1

21 culture.rep 16 12 culture : 2 6 rep : 8

Warning: GRM matrix is too SMALL

22 grm1(Clone) 923

23 rep.iblk 640 6 rep : 8 7 iblk : 80

Notice: Random model term grm1(Clone) is included in the DENSE equations.

Use !GDENSE -1 before model line to cancel this action.

Notice: This job may require more workspace.

Forming 2508 equations: 942 dense.

Initial updates will be shrunk by factor 0.316

Notice: LogL values are reported relative to a base of -30000.000

Notice: 11 singularities detected in design matrix.

1 LogL=-2844.04 S2= 8959.5 6391 df

2 LogL=-2797.00 S2= 8569.9 6391 df
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3 LogL=-2756.38 S2= 8131.9 6391 df

4 LogL=-2739.15 S2= 7765.8 6391 df

5 LogL=-2738.55 S2= 7701.9 6391 df

6 LogL=-2738.55 S2= 7699.1 6391 df

- - - Results from analysis of HT6 - - -

Akaike Information Criterion 65485.10 (assuming 4 parameters).

Bayesian Information Criterion 65512.15

Model_Term Gamma Sigma Sigma/SE % C

grm1(Clone) GRM_V 923 0.282261 2173.14 5.86 0 P

rep.iblk IDV_V 640 0.307974 2371.11 13.00 0 P

Clone IDV_V 926 0.150498 1158.70 5.99 0 P

Residual SCA_V 6399 1.000000 7699.05 49.64 0 P

Wald F statistics

Source of Variation NumDF F-inc

20 mu 1 0.11E+06

12 culture 1 2615.89

21 culture.rep 6 30.46

22 grm1(Clone) 923 effects fitted

23 rep.iblk 640 effects fitted

4 Clone 926 effects fitted ( 66 are zero)

78 possible outliers: see .res file

Finished: 11 Sep 2015 10:49:00.846 LogL Converged

Notes:

• of 926 clones identified, 860 have data and 923 have genomic data.

• The .res file contains additional details about the analysis including a listing of the
larger marker effects. All marker effects are reported in the .mef file.

• Particular columns of the .grr data can be included in the model using the grr(Factor,i)
model term where and i specifies which (number) regressor variable to include.

Listing of the larger marker/regressor effects

368 368 1.43024 1.34858

617 617 1.27161 1.37820

777 777 -1.28065 1.34481

1246 1246 1.24813 1.35733

1903 1903 -1.26910 1.35005

2445 2445 -1.37604 1.35490

2497 2497 -1.23152 1.35987

3180 3180 -1.24970 1.36437

3521 3521 -1.19582 1.34865

3802 3802 1.17789 1.34939

4195 4195 -1.21353 1.36748

4351 4351 -1.37283 1.34183
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1.2.7 Functions of variance components

Two new functions have been introduced to allow multiplication of parameters and taking
square roots of parameters and calculating standard errors of these functions.

S label i:j when i:j are assumed positive variance parameters, inserts components which
are the SQRT of components i:j,

X label i*k inserts a component being the product of components i and k.

X label i:j*k inserts j − i+ 1 components being the products of components i : j and k.

X label i:j*k:l inserts a set of j−i+1 components being the pairwise products of components
i : j and k : l.

The multiply option (X) allows a correlation in a CORUV structure to be converted to a
covariance. The SQRT option allows conversion of CORGH to US, provided the dimension is
moderate (say < 10).

One can also convert CORUH and XFA to US using

V label i:j where i : j spans an XFA variance structure, inserts the US matrix based on the
XFA parameters.

V label i:j where i : j spans a CORUH variance structure, inserts the US matrix based on
the CORUH parameters.

When ASReml reads back the variance parameters from the .asr file, the parameters are
given a name based on the random linear model term. The parameters in the R structures are
effectively given a name Residual. The individual variance parameters associated with the
linear model term can be specified by number, or sequence of numbers (n:m) by appending
these in square braces after the linear model term, for example C.Trait[3] or Residual[

4:6]. Users may contract names if they do not cause ambiguity, for example Sire.Trait

might be contracted to Sire if there are no other random terms including Sire. If the
user is in doubt of the name or number of a parameter then running the program with
VPREDICT !DEFINE and a blank line will construct a .pvc file with the names and numbers
of parameters identified.

Critical change For generalised linear models in ASReml 4 the .pvc file reports and numbers,
for completeness, a residual or dispersion parameter both when the parameter is estimated
or fixed. By contrast ASReml 3 does not report or number if the parameter is fixed, by
default, at 1. Hence the parameters might be numbered differently in ASReml 4 and ASReml
3.
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1.2.8 A detailed example

The following example for a bivariate sire model is a little more complicated. The job file
bsiremod.as contains

...

coop.fmt

ywt fat ~ Trait Trait.(age c(brr) sex sex.age) !r Trait.sire !f Tr.grp

1 2 1

0 0 ID

Trait 0 US * !GP

Trait.sire 2

Trait 0 US * !GP

sire 0 ID

VPREDICT !DEFINE

F phenvar Residual + Sire;Trait # 1:3 + 4:6

F addvar sire * 4 # 4:6 * 4

H heritA addvar[1] phenvar[1] # 10 7

H heritB addvar[3] phenvar[3] # 12 9

R phencorr phenvar # 7 8 9

R gencorr addvar # 4:6

The relevant lines of the .asr file are

Model_Term Sigma Sigma Sigma/SE % C

Residual 8140 effects

Residual US_V 1 1 23.2055 23.2055 44.44 0 P

Residual US_C 2 1 2.50402 2.50402 18.56 0 P

Residual US_V 2 2 1.66292 1.66292 32.82 0 P

Trait.sire US_V 1 1 1.45821 1.45821 3.66 0 P

Trait.sire US_C 2 1 0.130280 0.130280 1.92 0 P

Trait.sire US_V 2 2 0.344376E-01 0.344376E-01 2.03 0 P

Numbering the parameters reported in bsiremod.asr (and bsiremod.vvp)

1
2
3
4
5
6

error variance for ywt
error covariance for ywt and fat

error variance for fat
sire variance component for ywt
sire covariance for ywt and fat

sire variance for fat

then

F phenvar Residual + Trait.sire or
F phenvar Residual + sire;Trait or F phenvar 1:3 + 4:6

creates new components 7 = 1+4, 8 = 2+5 and 9 = 3+6,

F addvar sire;Trait * 4 or F addvar 4:6 * 4

creates new components 10 = 4 × 4, 11 = 5 × 4 and 12 = 6 × 4,

H heritA addvar[1] phenvar[1] or H heritA 10 7

forms 10 / 7 to give the heritability for ywt,
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H heritB addvar[3] phenvar[3] or H heritB 12 9

forms 12 / 9 to give the heritability for fat,

R phencorr phenvar or R phencorr 7 8 9

forms 8 /
√

7 × 9, that is, the phenotypic correlation between ywt and fat,

R gencorr addvar or R gencorr 4:6

forms 5 /
√

4×6, that is, the genetic correlation between ywt and fat.

The resulting .pvc file contains:

Residual 8140 effects

1 Residual;Residual V 1 1 23.2055 0.522176

2 Residual;Residual C 2 1 2.50402 0.134915

3 Residual;Residual V 2 2 1.66292 0.506679E-01

4 Trait.sire V 1 1 1.45821 0.398418

5 Trait.sire C 2 1 0.130280 0.678542E-01

6 Trait.sire V 2 2 0.344376E-01 0.169643E-01

7 phenvar 1 24.664 0.64250

8 phenvar 2 2.6343 0.14763

9 phenvar 3 1.6974 0.52366E-01

10 addvar 4 5.8328 1.5926

11 addvar 5 0.52112 0.27170

12 addvar 6 0.13775 0.67799E-01

13 heritA = addvar 10/phenvar 7= 0.2365 0.0612

14 heritB = addvar 12/phenvar 9= 0.0812 0.0394

15 phenco 2 1 = phenv 8/SQR[phenv 7*phenv 9]= 0.4071 0.0183

16 gencor 2 1 = addva 11/SQR[addva 10*addva 12]= 0.5814 0.2039

Notice: The parameter estimates are followed by

their approximate standard errors.

The first 8 lines are based on the .asr file.

1.2.9 Updating loadings in factor analytic models

The algorithm for updating loadings in factor analytic models has been improved. This
builds on an earlier change implemented in ASReml 4 which modified updates to loadings,
but proved too conservative causing such jobs to take too many iterations to converge.
The motivation for change was that the original update procedure sometimes produced
unreasonable updates, or otherwise came near to convergence and then drifted away. The
present procedure is to modify the average information matrix by increasing the diagonal
elements pertaining to loadings by a percentage, p. The default is to start with p = 10% and
reduce it by 1 or 2% each iteration down to 1%. If the starting values are poor, 10% may
not be a sufficient initial retardation. If it appears the updates are unreasonable, ASReml
will increase the value of p by 10% and then continue. The user can set the initial value of p
with the qualifier !AIPENALTY p. After the penalty has reduced to 1%, it is further reduced
to 0.2%. The qualifier can be used to set p to 0 if desired. The value of p can be monitored
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by using the !LOGFILE and !DEBUG command line qualifiers and searching the .asl file for
the string XFAIF (XFA Inflation Factor).

1.3 Modifications and improvements to output

1.3.1 Output formats in the .asr file

The general aim has been to make as few changes as possible to output formats. However,
there are some minor changes with this release. These are likely to effect users who have
developed in-house routines to parse ASReml output files. Some field widths have been
changed to reduce the frequency of fields running together. In particular, the header line for
the table of variance components has been changed to

Model_Term Gamma Sigma Sigma/SE % C

or

Model_Term Sigma Sigma Sigma/SE % C

and the contents of the leading fields modified to better identify the particular components.
These now show the model term, the component (of an interaction) and the variance struc-
ture, the parameter type and the indexing or size information in a more consistent manner
than before.

1.3.2 Writing out a design matrix

The new qualifier !DESIGN on the datafile line causes ASReml to write the design matrix, not
including the response variable, to a .des file. It allows ASReml to create the design matrix
required by the VCM process, see Section 1.2.1. For example, using a control file vcmdes.as

containing

Create VCM Design for H-F model

Row *

Col *

Off

Y !=V0

vcmdes.asd !DESIGN

Y ∼ Row and(Row,-0.5) and(Col,0.5) Off

and a data file vcmdes.asd containing

1 1 0

2 1 -1
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2 2 0

3 1 -1

3 2 -1

3 3 0

4 1 -1

4 2 -1

4 3 -1

4 4 0

5 1 -1

5 2 -1

5 3 -1

5 4 -1

5 5 0

then the file vcmdes.des will be generated which contains the values used in fitting the
variance model for the HuynhFeldt model given in Section 1.2.1.

1.3.3 XML output

The primary tables reported in the .asr file and key output from .pvs and .sln files are
written to .xml file in xml format. Output is presented in the order of computation. The first
block written is a .asr block includes start and finish times, the data summary, the iteration
sequence summary and information criteria, then from the .pvs file the tables and associated
information, then the summary of estimated variance structure parameters from the .asr

file, then information from the .sln file then finally the Wald F statistics and completion
information from the .asr file. The process is repeated for each cycle of analysis. The
intended use of this file is by programs written to parse ASReml output. For further details,
including the status of intended future developments, please contact support@vsni.co.uk.

1.3.4 Writing output to a separate folder

!OUTFOLDER [path] allows most of the output files to be written to a folder other than the
working folder. This qualifier must be placed on the top command line as it needs to be
processed before any output files are opened. Most files produced by ASReml have a filename
structure

<basename><subname>.<extension>

where <subname> is a command line argument value. If !OUTFOLDER is specified without
path, the output filename pattern becomes

<basename><subname>/<basename>.<extension>

If path is specified, the output filename pattern becomes

<path>/<basename><subname>.<extension>

There are a few files written by ASReml that do not follow this naming pattern, for example,
ainverse.bin and asrdata.bin. These remain unchanged, that is, they are not written to
the output folder.
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1.4 Functional specification of the mixed model

1.3.5 Prediction using two-way interaction effects

In some cases we wish to calculate from two way interaction effects, bcij say, effects for
one of the factors, B say, that are a weighted sum averaged over the c levels of C, ie.
bi =

∑c
j=1 bcijwj.

TPREDICT C !AVE B weights !ONLYUSE B.C

allows this to be produced more computationally efficiently than it would be using PREDICT.
For example,

TPREDICT Animal !AVE Trait 2.1 1.2 -7.4 !ONLYUSE Trait.Animal

Part of the motivation for this is the calculation of selection indices. The index coefficients
are typically derived as w = a′GomG

−1
mm where Gmm is the variance matrix for the measured

traits (corresponding to C in the example), Gom is the genetic covariance matrix between
the objective traits and the measured traits, and a is the vector of economic values for the
objective traits. The results are given in a .sli (selection index) file. This directive should
be placed after the model specification.

1.3.6 Solution (.sln) file

A header

Model_Term Level Effect seEffect

has been added. Note that extra signifcant digits are reported when !SLNFORM is set, and
expanded labelling of the levels in interactions is used because field width is no longer
restricted.

1.4 Functional specification of the mixed model

The main development in Release 4 is the implementation of a functional model specification.
This is described in detail in Chapter 2. The distinguishing feature of this specification is that
the variance models for individual terms are specified by applying variance model functions
to the terms in the model definition lines. This is in contrast to the structural specification
of versions prior to Release 4 in which the variance models were only imposed after the mixed
model definition line(s).

The functional specification is described through a series of examples of increasing com-
plexity, using the Nebraska Intrastate Nursery (NIN) data (Chapter 3 of the User Guide) for
demonstration. A more comprehensive set of examples is presented in Chapter 3.
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2 Functional specification of the mixed
model

2.1 Introduction

Prior to Release 4, variance structures were applied to random model terms and the residual
error term by specifying these structures after the mixed model had been specified. In Re-
lease 4, a new functional specification of the variance model has been implemented in which
variance structures can be specified by applying variance model functions directly to terms
in the model definition line(s). This offers a more concise and less error-prone alternative to
the structural specification and mirrors the implementation in ASReml-R. An understand-
ing of the new specification should facilitate free movement between the standalone and R
platforms.

The functional specification is introduced for the random model terms in Section 2.4 and
the residual error term in Section 2.5. In Section 2.7 the NIN data is used for demonstration,
with coding included for both specifications to allow direct comparison between the existing
and new code. More advanced aspects of the functional specification are presented after the
example.

2.2 Typographic convention

A box system is used to assist existing users in migrating from the structural specification
to the functional specification that is new with Release 4:

Boxes like this are used throughout this chapter to present the structural specification corre-
sponding to the particular aspect of the functional specification under discussion.

2.3 The theory

From Chapter 2 of the ASReml User Guide, the linear mixed model can be written as

y = Xτ +Zu+ e (2.1)
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2.3 The theory

where y (n× 1) is a vector of observations, τ (p× 1) is a vector of fixed effects, X (n× p)
is the design matrix of full column rank that associates observations with the appropriate
combination of fixed effects, u (q × 1) is a vector of random effects, Z (n× q) is the design
matrix that associates observations with the appropriate combination of random effects, and
e (n× 1) is the vector of residual errors.

2.3.1 Sigma parameterization of the linear mixed model

Model (2.1) is called a linear mixed model or linear mixed effects model. It is assumed[
u
e

]
∼ N

([
0
0

]
,

[
G(σg) 0

0 Rv(σr)

])
(2.2)

where the matrices G and Rv are variance matrices for u and e and are functions of parame-
ters σg and σr.This requires that the random effects u and residual errors e are uncorrelated.
The variance matrix for y is then of the form

var (y) = ZG(σg)Z
ᵀ

+Rv(σr) (2.3)

which we will refer to as the sigma parameterization of the G and R variance structures,
and the individual variance structure parameters in σg and σr will be referred to as sigmas.
The variance models given by G and Rv are referred to as G structures and R structures
respectively.

We illustrate these concepts using the simplest linear mixed model, that is, the one-way
classification.

Example 2.1 A simple example

Consider a one-way classification comprising a single random effect u, and a residual error
term e. The two random components of this model, namely u and e, are assumed to
be independent and to follow a normal distribution such that u ∼ N(0, σ2

uIq) and e ∼
N(0, σ2

eIn). Hence the variance of y has the form

var (y) = σ2
uZZ

ᵀ
+ σ2

eIn (2.4)

This model has two variance structure parameters or sigmas: the variance component σ2
u

associated with u, and the variance component σ2
e associated with e. Mapping this equation

back to (2.3), we have σg = σ2
u, G(σg) = σ2

uIq, σr = σ2
e and Rv(σr) = σ2

eIn.

�

2.3.2 Partitioning the fixed and random model terms

Typically, τ and u are composed of several model terms, that is, τ can be partitioned as
τ = [τ ᵀ

1
. . . τ ᵀ

t
]ᵀ and u can be partitioned as u = [uᵀ

1
. . .uᵀ

b
]ᵀ, with X and Z partitioned

conformably as X = [X1 . . .X t] and Z = [Z1 . . .Zb].
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2.3 The theory

2.3.3 G structure for the random model terms

For u partitioned as u = [uᵀ
1
. . .uᵀ

b
]ᵀ, we impose a direct sum structure on the matrix G,

written

G = ⊕b′i=1Gi =


G1 0 . . . 0 0
0 G2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Gb′−1 0
0 0 . . . 0 Gb′


where ⊕ is the direct sum operator, each Gi is of size qi and q =

∑
i qi.

The default assumption is that each random model term generates one component of this
direct sum (then b′ = b and var (ui) = Gi for i = 1 . . . b). This means that the random
effects from any two distinct model terms are uncorrelated. However, in some models, one
component of G may apply across several model terms, for example, in random coefficient
regression where the random intercepts and slopes for subjects are correlated, see 2.4.2. To
accommodate these cases, one component of G may apply across several model terms (then
b′ < b). In some other (less likely but possible) cases, we may wish to separate one model
term over several independent parts (then b′ > b), see Section 2.4.2.

Example 2.2 Variance components mixed models

Building example 2.1 to a linear mixed model with more than one (b > 1) random effect
(typically known as a variance components mixed model), the random effects ui in u, and
the residual errors e, are assumed pairwise uncorrelated and to each be normally distributed
with mean zero and variance given by

var (ui) = σ2
ui
Iqi

and

var (e) = σ2
eIn

where Iqi and In are identity matrices of dimension qi and n, respectively. In this case

var (y) =
b∑
i=1

σ2
ui
ZiZ

ᵀ
i + σ2

eIn. (2.5)

�

2.3.4 Partitioning the residual error term

As for the fixed and random model terms, it is often useful or appropriate to consider a
partitioning of the vector of residual errors e according to some conditioning factor. We
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2.3 The theory

use the term section to describe this partitioning and the most common example of the use
of sections in e is when we wish to allow sections in the data to have different variance
structures. For example, in the analysis of multi-environment trials (METs) it is natural
to expect that each trial will require a separate (possibly spatial) error structure. In this
case, for s sections we have e = [eᵀ

1
, eᵀ

2
, . . . , eᵀ

s
]ᵀ assuming that the data vector is ordered by

section, and where ej represents the vector of errors for the jth section.

2.3.5 R structure for the residual error term

For e partitioned as e = [eᵀ1, e
ᵀ
2, . . . , e

ᵀ
s ]
ᵀ we allow the matrix Rv to have a similar direct

sum structure, with

Rv = ⊕sj=1Rvj =


Rv1 0 . . . 0 0

0 Rv2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Rvs−1 0
0 0 . . . 0 Rvs


for s ≥ 1 sections and the data ordered by section. Note that it may be necessary to re-
order (re-number) the data units in order to achieve this structure. In ASReml it is now
straightforward to apply possibly different variance structures to each component of Rv.

In many cases, the residual errors (e) can be expected to share a common variance structure.
In this case there is only one section (s = 1).

Typically a variance structure is specified for each random model term and often more
complex models than the simple IID model are specified. ASReml offers a wide range of
variance models to choose from. They are listed in Table 2.5 and are described in more
detail in the following sections.

2.3.6 Gamma parameterization for the linear mixed model

The sigma parameterization of model (2.3) is one possible parameterization of var (y) . In this
parameterization both G(σg) and Rv(σr) are variance matrices and the variance structure
parameters in σg and σr are referred to as sigmas, see above. Other parameterizations
are possible and are sometimes useful. For example, in some of the early development of
REML for the traditional mixed model of (2.5), the variance matrix was parameterized as
the equivalent model

var (y) = σ2
e

(
b∑
i

γgiZiZ
ᵀ
i + In

)
(2.6)

for γgi being the ratio of the variance component for the random term ui relative to error
variance, that is, γgi = σ2

ui
/σ2

e . In this case ASReml calculated a simple estimate of σ2
e and

initial values for the iterative process were specified in terms of the ratios γgi rather than in
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2.4 Applying variance structures to random model terms

terms of the variance components σ2
ui
. It was often easier to specify initial values in terms of

these ratios rather than the variance components which is why this approach was adopted.
Where Rv(σr) can be written as a scaled correlation matrix, that is, Rv(σr) = σ2

eRc(γr),
this suggests the alternative specification of (2.2)[

u
e

]
∼ N

([
0
0

]
, σ2

e

[
G(γg) 0

0 Rc(γr)

])
(2.7)

where γg and γr represent the variance structure parameters associated with scaled (by σ2
e)

variance matrices. In this case

var (y) = σ2
e

(
ZG(γg)Z

ᵀ
+Rc(γr)

)
, (2.8)

which we will refer to as the gamma parameterization, and the individual variance structure
parameters in γg and γr will be referred to as gammas. ASReml switches between the sigma
and gamma parameterizations for estimation. This is discussed further in Section 2.8.

2.3.7 Parameter types

Each sigma in σg and σr and each gamma in γg and γr has a parameter type, for ex-
ample, variance components, variance component ratios, autocorrelation parameters, factor
loadings. Furthermore, the parameters in σg, σr, γg and γr can span multiple types. For
example, the spatial analysis of a simple column trial would involve variance components
(sigma parameterization) or variance component ratios (gamma parameterization) and spa-
tial autocorrelation parameters.

Parameterization prior to Release 4 When ASReml was developed, (2.2) and (2.8) were
combined into [

u
e

]
∼ N

([
0
0

]
, θ

[
G(γ) 0

0 R(φ)

])
(2.9)

where θ was referred to as a scaling parameter and was used in specifying the variance model.
The way θ was treated depended on the way R(φ) was defined. If R(φ) included variance
parameters then, to avoid problems in estimability and for convenience, we set θ = 1. In
this case, ASReml used the sigma parameterization and estimated sigmas were reported.
Alternatively, if R(φ) was defined to be a correlation matrix (diagonal elements equal to 1)
then the gamma parameterization was used and the estimated gammas were reported. In
this case the estimated sigmas were also reported.

2.4 Applying variance structures to random model terms

The random model terms ui in u define the random effects and associated design matrices,
Zi ∈ Z, but additional information is required before the model can be fitted. This extra
step involves defining the G structure for each term. In general, there are two different
approaches to this problem which we refer to as the structural approach and the functional
approach. The structural approach applies variance models to individual terms after the
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random model has been defined. This has been the approach of ASReml until Release 4
and gives a step-by-step approach to building up the full model that is straightforward but
not concise. In contrast, the functional approach that is new to Release 4, uses functions
to directly apply variance models to the components of the random model term to produce
a consolidated model term that simultaneously defines both the design matrix (Zi) and
variance model (Gi).

2.4.1 Process to define a consolidated model term

Consider a linear model term column.row comprising the interaction between the single
model terms column and row. We refer to column.row as a compound model term. If the
variance structure for column.row is the direct product of two matrices, the first of which
is an IID variance structure that is a scaled identity matrix with dimension equal to the
number of levels of the factor column and the second of which is a matrix with dimension
equal to the number of levels of the factor row and with elements representing a first order
autoregressive correlation structure AR1, then we represent this by the consolidated model
term idv(column).ar1(row). This specifies a two-dimensional separable spatial variance
structure for column.row but with spatial correlation in the row direction only. A consol-
idated model term is therefore comprised of component terms, each with a variance model
function applied to give the required direct product form of the variance structure. Table 2.1
demonstrates how to build consolidated terms in ASReml for a small selection of examples.
The linear model term (single or compound) is first identified (column 2) and the individual
components that identify the dimension of the individual matrices used in forming the direct
product variance structure are then written down (column 3). Note that in the simplest cases
there is only one component. The variance structure associated with each component has a
structure name (column 4) and a corresponding variance model function name (column 5)
giving the associated component variance structures (column 6). The consolidated model
term is the term presented in the final column of the table. In contrast, in ASReml 3 the
linear model terms are defined on the model line and subsequently a G structure line is
given for each linear model term which specifies the component terms and their associated
structures. The simplest form of a consolidated model term is a single model term with a
variance model function applied, eg. idv(repl) in Table 2.1, and the next simplest is a
compound model term with a variance model function applied, eg. idv(A.B) in Table 2.1.

In summary, the following are rules in forming consolidated model terms and applying vari-
ance model functions to random model terms:

• variance model functions can be applied to single model terms (see example 1 in Table
2.1), the components in compound model terms (examples 4 to 6) and constructed linear
model functions of variables (example 2),

• variance model functions can also be applied to compound model terms (example 3)

• variance model functions cannot be applied to expandable model terms, for example, to
– A*B which expands to A B A.B
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– A/B which expands to A A.B

– at(A,i,j).B which expands to at(A,i).B at(A,j).B

• only one component of a variance structure for a compound model term may include a
variance parameter, the other components must be correlation structures (no associated
variance parameter). This is due to the identifiability issues that occur when multiple
variance structures are specified. This is explained in NIN example 3a, see Section 2.7.
The defined variance function may be homogeneous (name ending in v) or heterogeneous
variance (name ending in h). This is discussed in detail in Section 2.4 of the User Guide.

Some common variance functions are defined in Table 2.2; the full range of variance model
functions and their detailed definition is presented in Table 2.5.

Table 2.1: Building consolidated model terms in ASReml

linear model term
(type of term)

component(s) variance
structure
name

variance
model
function
name

covariance
component

consolidated model
term

1 repl

single
repl IDV idv() idv(repl) idv(repl)

2 fac(x)

single
fac(x) EXPV expv() expv(fac(x)) expv(fac(x))

3 A.B A.B IDV idv() idv(A.B) idv(A.B)

compound

4 column.row column IDV idv() idv(column) idv(column).ar1(row)

compound row AR1 ar1() ar1(row)

5 site.variety site DIAG diag() diag(site) diag(site).id(variety)

compound variety ID id() id(variety)

6 Trait.animal Trait US us() us(Trait) us(Trait).nrm(animal)

compound animal NRM nrm() nrm(animal)

2.4.2 Modelling a single variance structure over several model terms

This facility was motivated by two considerations. Typically the random effects from any
two distinct model terms are uncorrelated. However, in some models one G structure may
apply across several model terms. Sometimes one also wishes to partition the random effects
into sets with independent variance structures. In ASReml, we can accomplish these two
models using the special variance model function str(), where the name str is for structure
and str() has the following general form:
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Table 2.2: List of common variance model functions, their type (correlation or variance),
the form of the variance matrix generated (C for correlation, V for variance matrix), and a
brief description. Parameters σ2

i > 0 are variances, −1 < ρi < 1 are correlations. Subscipt c
denotes parameter held in common across all rows/columns.

name type variance matrix description
(for set of n effects)

id() correlation C = I IID with variance 1

idv() variance V = σ2
cI IID with common variance = default model

idh() variance V = diag{σ2
1 . . . σ

2
n} independent with separate variances

ar1() correlation Cij = ρ
|i−j|
c auto-regressive structure of order 1

ar1v() variance Vij = σ2
cρ
|i−j|
c auto-regressive structure of order 1

ar1h() variance Vij = σiσjρ
|i−j|
c auto-regressive structure of order 1

corg() correlation Cij = ρij unstructured correlation matrix

diag() variance V = diag{σ2
1 . . . σ

2
n} independent with separate variances (same as idh())

grm() (known) cor-
relation

C specified applies a known (scaled) correlation matrix; the
number of rows in the matrix must be match the
number of levels of the factor it is applied to and the
order of rows must match the order of the levels

nrm() (known) cor-
relation

C specified applies a generated relationship matrix derived from
the functions argument associated pedigree file

us() variance Vij = σij general unstructured, symmetric positive definite co-
variance matrix

fa(,k) variance V = ΛΛ
ᵀ

+ Ψ factor analytic model of order k with Λ of size n×k.

str(model term(s) variance structure(s))

The m individual model terms generate the design matrices Zi and effect vectors ui of
size bi (i=1,. . . ,m) and the v variance structure terms generate variance structures Gj of
size b∗j (j = 1, . . . , v). The function str() generates a combined model design matrix
Zc = [Z1 . . .Zm] and a combined effects vector uᵀc = [uᵀ

1
. . .uᵀm] of size bc = Σm

i=1bi and
the variance structure for uc is Gc = ⊕vj=1Gj for uc and Gc to be conformable Σv

j=1b
∗
j = bc.

If v = 1 then there is one variance structure associated with the combined set of effects and
if v > 1 we can partition uc and Gc with uᵀc = [u∗ᵀ

1
. . .u∗ᵀv ] and Gc = [G∗

1
. . .G∗v] and the

effect vectors are independent of each other and the effects u∗j have variance structure G∗j .
A restriction with str() is that the closing parenthesis must be on the same line because of
the way ASReml processes the command file.

Example 2.3 Random coefficient regression

In the first order random coefficient regression model it is required to specify a covariance
between the intercept and slope for each subject to ensure translation invariance, that is,
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equivalent variance parameter estimates for addition of any constant to the independent
variable. For example, in a random coefficient regression where a set of random intercepts is
specified by the model term Animal (with 10 levels) and a set of random slopes is specified
by the model term age.Animal, translation invariance is achieved using str() as

str(Animal age.Animal us(2).id(10))

The algorithm places the model terms specified using the argument form together in the
processed random model, here Animal followed by age.Animal. The variance structure(s)
begins at the start of the first term specified in str() and is expected to exactly span
the whole set of terms given within the brackets. The overall size of the variance model is
checked against the total number of levels of these terms, but the user must verify that the
ordering is appropriate for (matches) the variance model specified.

Using the structural specification, the model term is written as
!{ Animal age.Animal !} ...

and the G structure lines as
Animal 2

2 0 US

0.3 0.01 0.2

Animal 0 ID

The idea was to define a variance structure that is associated with effects in the linear model
starting at the first term specified and exactly spanning the whole set of terms given inside
the !{ !} brackets.

In our example, this random model generates a combined set of random effects from the
individual animal intercepts, uI = (uI1 . . . uI10)

ᵀ and animal slopes, uS = (uS1 . . . uS10)
ᵀ, as

uIS = (uᵀI u
ᵀ
S)ᵀ. The consolidated term then has variance structure of the form

var (uIS) = var

([
uI
uS

])
=

[
σII σIS
σIS σSS

]
⊗ I10 =

[
σIII10 σISI10
σISI10 σSSI10

]

Here, the set of animal intercepts has a common variance (σII), and the set of animal slopes
has a (different) common variance (σSS). Intercepts and/or slopes from two different animals
are independent, but the intercept and slope from any given animal have covariance σIS (or
correlation σIS/

√
σIIσSS). In this context, we use integers as arguments to emphasize that

the arguments are specifying the size of the variance structure. For this example, id(10)

can be replaced by id(Animal). In order to simplify processing of the str() arguments,
ASReml expects at least 1 single term in the consolidated model term to be a variance model
function with a dimension rather than a variable name as the argument, eg. us(2) in the
example. Mostly this is quite natural as a suitable factor is not normally available to indicate
the number of linear model terms being combined (2 in this example). The dummy integer
function id(1) could be introduced to allow processing if the consolidated model term could
be expressed using variable arguments, for example,

str(Mpar and(Fpar) id(1).idv(Mpar))
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2.5 Applying variance structures to the residual error term

overlays the Mpar and Fpar design matrices and allows the resulting effects to be modelled
with a single variance parameter.

�

Example 2.4 Fitting a genetic covariance between direct and maternal effects

This example fits direct effects for two traits, but maternal effects for the first trait only

str(Trait.animal at(Trait,1).dam us(3).nrm(animal))

where animal and dam are coded using the pedigree file.

Using the structural specification, the model term is written as
... !{ Trait.animal at(Trait,1).dam !} ...

and the G structure lines as
Trait.animal 2

3 0 US

0.3

0.01 0.2

0.01 0.01 0.2

animal 0 NRM #was AINV in ASReml 3

�

A rather artificial example of using v greater than 1 is when we have 20 levels in a factor A
and wish to use one variance for the first 8 levels and another for the last 12 levels. Then

str(A idv(8) idv(12))

will do this.

2.5 Applying variance structures to the residual error term

In Release 4 the residual error term is also defined using a consolidated model term, and it
now appears after a residual statement that has been introduced to specify the associated
variance structure. We give five examples. Firstly, for the default situation of IID residual
errors (1. in box on page 34), the error model definition line would be

residual idv(units)

This second example would specify a separable autoregressive spatial model of order 1
(AR1×AR1) for the observations from a trial arranged in a rectangular array indexed by the
data variables column and row (2. in box on page 34). To apply this variance structure the
observations would need to cover the whole grid, but it would not be necessary to pre-order
the data file as rows within columns as ASReml uses the information in column and row to
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2.5 Applying variance structures to the residual error term

put the observations into the appropriate row within column order:

residual ar1v(column).ar1(row)

If there were 3 columns and 23 rows in the previous example, then this third example

residual ar1v(3).ar1(23)

would be an equivalent coding for the AR1×AR1 model using the dimensions of the factors
rather than the factor names (3. in box on page 34). In this case the data records would need
to be sorted in the order rows within columns because ASReml does not have the information
needed to reorder the data internally.

The fourth example assumes variance heterogeneity among the data observations, that is,
that the three groups comprising observations 1. . . 23, 24. . . 50, 51. . . 70 have unequal vari-
ances (4. in box on page 34):

residual idv(23) idv(27) idv(20)

The fifth and final example is the default residual variance in a multivariate analysis (5. in
box on page 34). Specifying units as the first component is crucial as ASReml extracts the
trait values by trait within unit:

residual id(units).us(Trait)
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2.5 Applying variance structures to the residual error term

In the structural specification the R structure is specified by a Variance header line consisting
of three numbers s c g, followed by s sets of c variance structure lines. s is the number of
sections (see below), c is the number of components in the R structure for each section, and g
is the number of model terms with G structure definitions (described in the preceding section).

The following examples match the examples above as per the common italicized model de-
scriptions. This is the way the model definition has been applied in versions of ASReml prior
to Release 4

1. IID residual errors
no residual error term specified

2. separable autoregressive spatial model of order 1 (AR1×AR1)
1 2 0 #1 section, 2 variance terms, 0 G structures

rep rep AR1 .1 #the second ’rep’ names the data column for sorting

plot plot AR1 0.1

3. an equivalent coding for the AR1×AR1 model using the dimensions of the factors rather
than the factor names
1 2 0

3 0 AR1 .1

23 0 AR1 0.1

4. variance heterogeneity among the data observations
3 1 0

23 0 ID #default estimate residual variance for all 3 sections

27 0 ID

20 0 ID

5. default residual variance in a multivariate analysis
1 2 0

0 0 ID #let ASReml count how many data records there are

Trait 0 US * #letting ASReml choose start values

2.5.1 Two rules for defining the residual error term

There are two rules in defining the residual that require special consideration:

Rule 1 The number of effects in the residual term must be equal to the number of data units
included in the analysis.

Rule 2 Where a compound model term is specified for the residuals, each combination of
levels of the single model terms comprising this term must uniquely identify one unit of
the data. For example, in the spatial analysis of a column trial comprising 4 replicates of
24 varieties arranged as a grid of 4 rows by 24 columns (rows are replicates), a first order
separable autoregressive spatial variance structure for the residuals can be specified by the
consolidated model term ar1(column).ar1(row), where column and row are the appropriate
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2.5 Applying variance structures to the residual error term

columns in the data file. However, the number of data units must be the product of the
number of levels for row and the number of levels for column; 96 in this case. If this is not
the case, or if more than one unit is associated with some row column combination, ASReml
will return an error message and it will not be possible to use ar1(column).ar1(row) for
residual error. If there are fewer than 96 units and each row-column combination present is
associated with one unit, then Section 1.2.2 shows how to augment the data by completing
the grid to allow an appropriate analysis.

These rules will always be satisfied for a single section of data, that is, Rv = Rv1 = σ2In,
see Example 2.2, defined either by default (ie. with no residual specified) or in terms of the
units factor. However, a mismatch in both size and ordering is possible when either multiple
sections are present (as in multi-environment trial (MET) analysis) or when non-identity
variance model functions are used.

2.5.2 Using sat() to specify the residual model term for data with
sections

Section 2.3.5 described partitioning the data observations into data sections to which sepa-
rate variance structures are applied. There are three data sections in the example variance
heterogeneity among the data observations (4. in box on page 34). When variance structures
are specified using dimensions rather than factor names (idv(23) for section 1, idv(27)

for section 2,. . . in the example), the data must be ordered into sections and the variance
structures must be ordered to match the order of the sections in the data file. It is usually
more convenient to use a variable in the data file to identify sections within the data. The
data will be sorted internally by ASReml (ie. the data file does not need to be ordered in
any particular way) and the variance structures for sections can then be specified using the
sat function, for example

residual sat(section).idv(units)

for the simple example with 3 data sections, where section is a new column in the data file
to separate the data into the three sections: units 1. . . 23, 24. . . 50 and 51. . . 70. The sat

function (shorthand for section at) is new with Release 4 and performs several different tasks:

– it tells ASReml that the variance structure for the residual error term is a direct sum
structure (see Section 2.3.5) where the different components of the direct sum apply to
the different levels of the sectioning variable in the data file

– it prunes the levels for a section so that only the levels of factors defining the residual
variance structure for that section are used in forming that variance structure.

Often sections relate to sites (or trials or experiments) in the case where several related trials
are analysed together. For example, consider a MET dataset comprising data for three sites.
To model the residuals at each site by a separate AR1×AR1 variance structure, we could
write
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2.6 Identifiability

residual sat(site).ar1v(column).ar1(row)

Alternatively, an AR1×AR1 variance structure for sites 1 and 3, but an IDV×AR1 structure
for site 2, could be coded using sat either as

residual sat(site,1).ar1v(column).ar1(row),

sat(site,2).idv(column).ar1(row),

sat(site,3).ar1v(column).ar1(row)

or, more succinctly, as

residual sat(site,1,3).ar1v(column).ar1(row) sat(site,2).idv(column).ar1(row)

For each of these definitions, ASReml will determine the particular levels in row and column

for each site and hence the appropriate sizes of the AR1 matrices.

Important point A variance structure needs to be specified for every level of the sectioning
factor, in which case

residual sat(site,1,3).ar1(row).ar1(column)

would fail as there is no variance structure specified for site 2.

3 2 0

row row AR1 .1 #default estimate residual variance for all 3 sections

column column AR1 0.1

row row AR1 .1

column column ID

row row AR1 .1

column column AR1 0.1

2.6 Identifiability

Once all components of a compound model term have a variance model function applied,
ASReml attempts to determine whether the term is identifiable, that is, the terms that can
be separately estimated from (are not confounded with) other terms in the model. If the
consolidated model term generates a correlation matrix, for example, the consolidated model
term for A.B is specified as id(A).ar1(B), then it is usually the case that one wishes to fit a
model with this correlation structure but to also allow the effects to have a common variance.
When a correlation structure is specified for a consolidated term, either for an R or a G
structure, ASReml will detect this and add a common scaled variance parameter. Some users
might find it simpler and reduce confusion by specifying terms as variance terms directly.
For example, id(A).ar1(B) should become either idv(A).ar1(B) or id(A).ar1v(B); it is
arbitrary which variable the common variance is attached to. If more than one variance
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2.7 A sequence of variance structures for the NIN data

model function in the consolidated model term includes variance parameters, for example
idv(A).ar1v(B), then the parameters will not all be identifiable and so the user must either
change idv(A) to id(A) and leave ar1v(B) as it is, or change ar1v(B) to ar1(B) and leave
idv(A) as it is.

2.7 A sequence of variance structures for the NIN data

Having outlined the theory and introduced the functional specification, we pause now to
consider an example. The following is a series of six variance structures of increasing com-
plexity for the NIN column trial data (see Chapter 3 of the User Guide for an introduction
to these data). For each example we present a code box to the right that contains the func-
tional specification, a discussion of this code to the left, and the matching code under the
structural specification in a code box immediately below. We present the model specification
explicitly to help the user understand the logic. In some cases, experienced users will wish
to take advantage of reducing typing and clarity by using default rules. These are discussed
in Section 2.11.

1 Randomised complete blocks analysis: blocks fixed

NIN Alliance Trial 1989

variety !A

id

pid

raw

repl 4
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety repl

residual idv(units)

The only random term in a traditional ran-
domised complete block (RCB) analysis of
the NIN data is the residual error term e ∼
N(0, σ2

eI224). The model therefore involves
just one R structure (IDV) and no G struc-
ture. The variance model function name is
idv and there is just one consolidated model
term; idv(units).
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2.7 A sequence of variance structures for the NIN data

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety repl

1 1 0

0 0 ID #default gamma parameterization
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2.7 A sequence of variance structures for the NIN data

2 RCB analysis: blocks random

NIN Alliance Trial 1989

variety !A

id

pid

raw

repl 4
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety,

!r idv(repl)

residual idv(units)

The random effects RCB model has 2 ran-
dom terms to indicate that the total varia-
tion in the data is comprised of 2 components;
a random replicate term ur ∼ N(0, σ2

rI4)
and the residual error term, as in example 1.
The !r before repl tells ASReml that repl

is a random term. All random terms must
be written after !r in the model specification
line(s). This model involves both the origi-
nal IDV R structure and an IDV G structure
for the random replicate term. There are now
now 2 consolidated model terms; idv(repl)
and idv(units).

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89.asd !skip 1

yield ∼ mu variety,

!r repl

1 1 0

0 0 ID #default gamma parameterization
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2.7 A sequence of variance structures for the NIN data

3a Two-dimensional spatial model with spatial correlation in one direc-
tion

NIN Alliance Trial 1989

variety !A

id

pid

raw

repl 4
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety,

!r idv(repl) !f mv

residual idv(column).ar1(row)

The NIN trial was actually laid out in as a
rectangular array indexed in the data file by
row and column. We can therefore consider
fitting a spatial model for the residual term
where we allow for autocorrelated errors in
the row and/or column direction, see Section
2.5. However, there are missing plots in the
original data. Before fitting a spatial analy-
sis, we therefore need to fill out the data file
to contain records for the missing plots. This
allows us to define a separable variance struc-
ture for the residual error term that is the
kronecker product of a structure for rows and a structure for columns. The example in
the code box specifies e ∼ N(0, σ2

ecI11 ⊗ Σr(ρr)), that is, a two-dimensional first order
separable autoregressive spatial structure for error but with spatial correlation in the row
direction only (IDV×AR1): ar1(row) models the Σr(ρr) correlation structure for rows and
idv(column) models the IDV variance structure for columns. The consolidated model term

idv(column).ar1(row)

directly mirrors the algebraic form var (e) = σ2
ecI11 ⊗Σr(ρr).

Important points

• the same residual variance structure could be achieved by specifying
id(column).ar1v(row) which mirrors the alternate but equivalent algebraic form
var (e) = I11 ⊗ σ2

erΣr(ρr). It is arbitrary which variable the common variance is attached
to: column in the code box, row in the latter, see Section 2.6 on identifiability.

• if the correlation structure id(column).ar1(row) was specified, ASReml would automat-
ically add a common variance to model var (e) = σ2

eI11 ⊗Σr(ρr), see Section 2.6.

• !f mv is now included in the model specification. This tells ASReml to estimate the missing
values. The !f before mv indicates that the missing values are fixed effects in the sparse
set of terms. An equivalent way of specifying this model is
yield ∼ mu variety mv !r idv(repl)

where mv is the last fixed effect term and ASReml will include mv and succeeding terms in
the sparse set.

• ASReml would report an error if the consolidated model term idv(column).ar1v(row)

was specified: this would correspond to var (e) = σ2
eI11 ⊗ σ2

erΣr(ρr) and σ2
e and σ2

er are
unidentifiable in this case, that is, it is not possible to estimate them separately.
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2.7 A sequence of variance structures for the NIN data

• this is a univariate analysis in which case ASReml automatically uses the gamma parame-
terization for estimation, see Section 2.8. Consequently, both the sigmas and the gammas
are reported. The user can force ASReml to use the sigma parameterization by placing
!SIGMAP immediately after the independent variable and before ∼ on the model definition
line:

yield !SIGMAP ∼ mu variety mv,

!SIGMAP is a new qualifier with Release 4, see also Section 2.8. In this case only the sigmas
are reported but they appear twice in the output, that is, in both of the columns headed
sigma in the .asr file, see Chapter 11 of the User Guide for detailed information on output
formats in ASReml.

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !r repl !f mv

1 2 0

11 column ID #default gamma parameterization

22 row AR1

41



2.7 A sequence of variance structures for the NIN data

3b Two-dimensional separable autoregressive spatial model

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety,

!r idv(repl) !f mv

residual ar1v(column).ar1(row)

This model extends 3a by specifying a first
order autoregressive correlation structure for
columns. The R structure in this case is the
kronecker product of two autoregressive corre-
lation matrices, that is, var (e) = σ2

ecΣc(ρc)⊗
Σr(ρr), giving an AR1×AR1 model for er-
ror. The consolidated model term in this
case is ar1v(column).ar1(row) and includes
ar1v(column) to model the σ2

ecΣc(ρc) vari-
ance structure for columns.

Important points

• the same residual variance structure could be achieved by specifying
ar1(column).ar1v(row) which mirrors the alternate but equivalent algebraic form
var (e) = Σc(ρc)⊗ σ2

erΣr(ρr).

• if the correlation structure ar1(column).ar1(row) was specified, ASReml would auto-
matically add a common variance, see Section 2.6.

• ASReml would report an error if the consolidated model term ar1v(column).ar1v(row)

was specified as this would correspond to var (e) = σ2
ecΣc(ρc)⊗ σ2

erΣr(ρr) and σ2
ec and σ2

er

are unidentifiable, that is, it is not possible to estimate them separately, see Section 2.6.

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !r repl !f mv

1 2 0

11 column AR1 #default gamma parameterization

22 row AR1
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2.7 A sequence of variance structures for the NIN data

3c Two-dimensional separable autoregressive spatial model with mea-
surement error

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety,

!r idv(repl) idv(units) !f mv

residual ar1v(column).ar1(row)

This model extends 3b by adding a random
units term. Thus
var (ur) = σ2

rI4 , var (uη) = σ2
ηI242 and

var (e) = σ2
ecΣc(ρc) ⊗ Σr(ρr). The reserved

word units tells ASReml to construct an ad-
ditional random term with one level for each
experimental unit, so that a second (indepen-
dent) error term can be fitted. A units term
is fitted in the model in cases like this where a
variance structure is applied to the errors. An
IDV variance structure is specified for units to model σ2

η I242 . The units term is sometimes
fitted in spatial models for field trial data to allow for a nugget effect. The model now has
two terms at the plot (experimental unit) level, that is, a correlated structure defined as an R
structure and an uncorrelated structure defined in the G structure. There are now three con-
solidated model terms; idv(repl), idv(units) and ar1v(column).ar1(row). This order
is reversed in 4.

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !r repl units !f mv

1 2 0

11 column AR1 #default gamma parameterization

22 row AR1
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2.7 A sequence of variance structures for the NIN data

4 Two-dimensional separable autoregressive spatial model defined as a
G structure

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety,

!r idv(repl) ar1v(column).ar1(row) !f mv

residual idv(units)

This model is equivalent to 3c but with the
spatial model defined as a G structure rather
than an R structure. The algebraic form is
written alternatively, but equivalently, to the
form in 3c, that is
var (ur) = σ2

rI4 ,
var (ucr) = σ2

crcΣc(ρc)⊗Σr(ρr) and
var (e) = σ2

e I242 .

Important points

• the same G structure could be achieved by specifying ar1(column).ar1v(row), see similar
comment in example 3b

• if the variance structure ar1v(column).ar1v(row) was specified ASReml would report an
error, see identical comment in example 3b

• estimation is based on the gamma parameterization in which case both the estimated
sigmas and the estimated gammas are reported. The user can force ASReml to use the
sigma parameterization by placing the !SIGMAP qualifier immediately after the indepen-
dent variable and before ∼ on the model definition line. In this case only the sigmas would
be reported, but they would be repeated in the column headed gamma in the output, see
Important points under example 3a.

NIN Alliance Trial 1989

variety !A

id
...

row 22

column 11

nin89aug.asd !skip 1

yield ∼ mu variety !r repl mu.column.row !f mv

1 1 1

0 0 ID #default gamma parameterization
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2.8 Sigma versus gamma parameterization

2.8 Sigma versus gamma parameterization

From Section 2.3.1, the variance matrix of y is

var (y) = ZG(σg)Z
ᵀ

+Rv(σr),

see model (2.3). This is referred to as the sigma parameterization and the individual vari-
ance structure parameters in σg and σr are referred to as sigmas. For the case when
the variance structure for the residual error term is a scaled correlation matrix, that is,
Rv(σr) = σ2

eRc(γr), the variance matrix of y can be written alternatively as

var (y) = σ2
e

(
ZG(γg)Z

ᵀ
+Rc(γr)

)
,

see (2.8). This is referred to as the gamma parameterization and the variance structure
parameters in γg and γr are referred to as gammas, see Section 2.3.6.

2.8.1 Which parameterization does ASReml use for estimation?

ASReml switches between the sigma and the gamma parameterizations depending on the
residual model specification. The current default for univariate, single section data-sets is the
gamma parameterization. It is possible to over-ride this default as discussed in the following
section. ASReml reports both the gammas and the sigmas when the gamma parameterization
is used for estimation. For historical reasons, the sigmas are presented twice (two identical
columns) when the sigma parameterization is used for estimation.

ASReml uses the sigma parameterization for analyses other than univariate and/or single
site analyses, examples including multi-section analyses, multivariate analyses and repeated
measures analysis using R structures that are not the default variance model (ie. scaled
identity).

2.8.2 Switching from the gamma to the sigma parameterization

ASReml uses the gamma parameterization by default for univariate and/or single section
analyses, see above. However, !SIGMAP is a new qualifier with Release 4 that enables the
user to force ASReml to use the sigma parameterization this case. This is achieved by placing
!SIGMAP immediately after the independent variable and before ∼ on the model definition
line. For example,

yield !SIGMAP ∼ mu variety !r idv(repl) !f mv

residual idv(units)

would force ASReml to use the sigma parameterization in NIN example 3a, see Section 2.7.

Table 2.3 gives the variance model specification for each of the six NIN examples (column 3),
the individual terms in G(σg) and Rv(σr) under the sigma parameterization (column 4),
the sigmas that are estimated under this parameterization (column 5), the individual terms
in G(γg) and Rv(γr) under the gamma parameterization (column 6) and the gammas that
are estimated under this parameterization (column 7).
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Table 2.3: G structure for the random terms (magenta) and R structure for the residual error term (cyan) under both the sigma and
gamma parameterizations, and the corresponding sigma(s)/gamma(s) under each parameterization for the series of NIN data examples

sigma parameterization gamma parameterization

no. definition variance model G(σg) sigma(s) G(γg) gamma(s)
specification Rv(σr) Rc(γr)

1 RCB analysis:
blocks fixed

residual idv(units) σ2
eI224

σ2
e I

224
none

2 RCB analysis:
blocks random

!r

idv(repl)

residual

idv(units)

σ2
rI4

σ2
eI224

σ2
r

σ2
e

γrI4

I224

γr

3a Two-dimensional
spatial model
correlation in
one direction

!r

idv(repl)

residual

idv(column).ar1(row)

σ2
rI4

σ2
ecI11

⊗Σr(ρr)
σ2
r

σ2
ec , ρr

γrI4

I
11
⊗Σr(ρr)

γr
ρr

3b Two-dimensional
separable
autoregressive
spatial model

!r

idv(repl)

residual

ar1v(column).ar1(row)

σ2
rI4

σ2
ecΣc(ρc)⊗Σr(ρr)

σ2
r

σ2
ec , ρr, ρc

γrI4

Σc(ρc)⊗Σr(ρr)
γr
ρr, ρc

3c Two-dimensional
separable
autoregressive
spatial
model with
measurement
error

!r

idv(repl)

idv(units)

residual

ar1v(column).ar1(row)

σ2
rI4

σ2
ηI224

σ2
ecΣc(ρc)⊗Σr(ρr)

σ2
r

σ2
η

σ2
ec , ρr, ρc

γrI4

γηI234

Σc(ρc)⊗Σr(ρr)

γr
γη
ρr, ρc

4 Two-dimensional
separable autoregressive
spatial model
defined as a
G structure

!r

idv(repl)

ar1v(column):ar1(row)

residual

idv(units)

σ2
rI4

σ2
crcΣc(ρc)⊗Σr(ρr)
σ2
eI224

σ2
r

σ2
crc , ρr, ρc
σ2
e

γrI4

γcrcΣc(ρc)⊗Σr(ρr)
I

224

γr
γcrc , ρr, ρc
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2.9 Variance model functions available in ASReml

The full range of variance models, that is, correlation, homogeneous variance and hetero-
geneous variance models available in ASReml is presented in Table 2.5 which is located at
the end of this document for easy access, see Section 2.12 on page 54. This presents the
variance structure name (in UPPERCASE), the corresponding variance model function name
(in lowercase) used to associate the variance structure with the appropriate component
of a model term, a brief description, the algebraic form of the model and the number of
associated variance structure parameters.

The models span correlation (base) models (diagonal elements equal to 1 and correlations
on the off diagonals), the extension of these to variance models (variances on the diagonals
and covariance on the off diagonals), additional models that are parameterized as variance
matrices rather than as correlation matrices and some special cases where the covariance
structure is known except for the scale.

2.9.1 Forming variance models from correlation models

The variance function models presented under correlation models in Table 2.5 (id . . . matk)
are used to specify the correlation models for the corresponding variance structures. The
corresponding homogeneous and heterogeneous variance models are specified by appending
v and h to the variance model function names respectively, and appending the corresponding
variance parameters to the corresponding list of parameters. This convention holds for most
models. It does not make sense to append v or h to the variance model function names for
the heterogeneous variance models from diag . . . xfak.

In summary:

• to specify a correlation model, provide the variance model function name given in Table
2.5, for example, for a factor row

exp(row)

is an exponential correlation model with a single correlation parameter,

• to specify an homogeneous variance model, append a v to the variance model function
name, for example

expv(row)

is an exponential variance model with 2 parameters (correlation and variance),

• to specify a heterogeneous variance model, append an h to the variance model function
name, for example

coruh(site)

is a variance matrix with different variances for each site but the same correlation for all
pairs of sites.
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2.10 New variance model function qualifiers

Important See Section 2.6 for rules on combining variance models and Section 2.10.1 for
important notes regarding initial values.

2.10 New variance model function qualifiers

A consolidated model term is comprised of one or more covariance components, where a
covariance component is a component of the model term to which a variance model function
has been applied, see Section 2.4 and Table 2.1. All of the covariance components so far
have been of the form

vmfname(component)

where vmfname is the variance model function name (in this font in first column of Table
2.5) and component is a component in the model term. Two single covariance components
are idv(repl) and ar1(row), see Table 2.1.

A general form for a covariance component is

vmfname(single component qualifiers)

where qualifiers is an optional list of one or more qualifiers to be applied to the variance
structure being defined. A simple example of this is the extension of idv(repl) to idv(repl

!INIT 0.65) which specifies an IDV structure of dimension 4 for replicates (NIN example 2)
with an initial variance of 0.65 for the variance component associated with replicates under
the sigma parameterization, or an initial variance component ratio of 0.65 for the variance
component ratio associated with replicates under the gamma parameterization.

Note that a variance structure of a particular dimension, ω say, can been specified directly
as

vmfname(ω qualifiers)

For example, idv(3) defines the IDV variance structure of dimension 3, that is, σ2I3 , and
idv(3 !INIT 1.1) specifies an initial value of 1.1 for the associated variance component
under the sigma parameterization or variance ratio under the gamma parameterization.
Likewise, ar1(10) specifies an autoregressive correlation structure (AR1) of order 10 and
ar1(10 !INIT 0.4) specifies this same structure with an initial autocorrelation parameter
of 0.4. A simple variance component σ2 would be defined as idv(1). Note that an integer
value for the first argument is only valid in variance model functions associated with residual
terms and str().

New qualifiers are in Table 2.4 (see Section 7.7 of the User Guide for the full list of qualifiers).
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2.10 New variance model function qualifiers

In the structural specification the G structure is specified on G structure lines placed after
any R structure lines. There must be a variance header line immediately after the model line.
It specifies three numbers, s, c an g. s and c relate to the R structure and are defined on
page 34. g is the number of (random) model terms which have a variance structure explicitly
defined as described here.
Each specification begins with a G structure header line. It contains the name of the model
term and the number of components. For each component, the variance structure is then
specified, nominating the
size key structure initial-parameter-values qualifiers where
size is the name of the component or the number of effects in it
key is 0 for most G structure cases
structure is the name of variance structure
initial-parameter-values and qualifiers are discussed later.
In the structural specification it is not now mandatory to specify initial values.

Table 2.4: New variance model function qualifiers available in ASReml

qualifier description

!INIT v v is the list of initial values for the variance structure parameters. If
initial values can be obtained from the .msv, .rsv or .tsv file, they
override these values, see Section 2.10.1

.

!COORD v provides coordinates for mapping the effects so that a spatial model can
be applied to the effects. It is needed when the coordinates are not in
the data file, for example
exp(Trait !COORD 1 2.5 3.5 5 8), see Section 2.10.2.

!SUBSECTION f f is a factor in the data that breaks the section into independent subsec-
tions, with subsections having common variance parameters, see Section
2.10.3

!USE t t is a compound model term component used elsewhere in the model;
allows this variance structure and its parameters to be the same as that
used for t, see Section 2.10.4 for an example

For existing qualifiers, please refer to Chapter 7 in ASReml User Guide Release 4, Functional
Specification.

2.10.1 Initial values !INIT v

Prior to Release 4 it was necessary to supply initial values for variance structure parameters
except for the default IDV variance structure for a random model term, where the default
initial variance (ratio) parameter value was 0.1. In Release 4, it is not generally necessary
to supply initial values. In this release, ASReml provides starting or initial values for vari-
ance structure parameters based on knowledge of the phenotypic variance of the response.
Occasionally these initial values are not adequate and more appropriate values will need to
be supplied by the user. In this case the user may have good prior information that can be
utilized in forming initial values.

There are several ways to provide initial values. The particular choice will depend on how
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2.10 New variance model function qualifiers

many values and other variance model function qualifiers are to be specified. The initial
values can be provided in a number of ways:

• in the variance structure specification, for example

ar1(row !INIT 0.35)

sets the initial value of the autocorrelation parameter for ar1(row) at 0.35; when this
form is used, all of the values required by the structure must be specified

• by modifying the .tsv or .msv file created in a preliminary run (Section 1.1.2)

• by supplying an .rsv file using !CONTINUE, refer to the User Guide.

Important points

• when initial values are supplied using !INIT, there must be the correct number of values
and they must be in the appropriate order, for example, for us() the initial values need
to be supplied in the order lower triangle row-wise

• for the gamma parameterization (Section 2.8), the variance structure parameters will be
gammas; in this case the initial values for the gammas that are variance component ratios
will be interpreted by ASReml as ratios.

The qualifiers are the same as for the structural specification except that:

• they are specified on the R and G structure lines in the structural specification, see (see
pages 49 and 34)

• the !INIT qualifier name is not defined in the structural formulation because initial
values are always expected

• the !COORD qualifier was not provided in the structural specification: if v was required,
it was supplied as an unadorned vector after the G structure lines.

2.10.2 Ways to supply distances in one-dimensional metric based mod-
els !COORD v

Power models rely on the definition of distance for the associated term. Information for
determining distances is supplied either implicitly by applying the variance model function
to the fac() of the coordinate variables, for example

expv(fac(X))
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2.10 New variance model function qualifiers

where X contains the positions, or explicitly with the !COORD qualifier, for example

expv(Time !COORD x)

where x is a vector of distances which has to be of length the number of levels of Time.

2.10.3 About subsections !SUBSECTION f

The !SUBSECTION qualifier provides an extension to the sat function of Section 2.5.2 for
modelling the residual variance. It allows the case of modelling multiple independent sections
of correlated observations with a common variance structure and common parameters within
sections. The sections can be of different sizes and any homogeneous variance correlation
model in Table 2.5 may be used for the variance structure. This gives an R structure of the
form

Rv = ⊕si=1Rvi where Rvi = ⊕sij=1 Σij(φi)

so Rvi may have a direct sum structure with common parameters. Note that, !SUBSECTION
is only available when the residual variance function is expressed in terms of one variance
function. !SUBSECTION f performs two tasks similar to those described in Section 2.5.2,
that is, defining a direct sum structure for the residual vector in a section, with the number
of subsections in section i, si, given by the number of levels of the factor f , and pruning the
levels of the factor defining the variance structure within each section but allowing common
variance parameters across sections. The data needs to be sorted in order of the variable f.
The following code would specify a common AR1 structure across sections, assumed sorted
in to the appropriate order within the section variable, with an initial spatial autocorrelation
parameter of 0.5

residual ar1(units !INIT 0.5 !SUBSECTION section)

If there was data sorted on date within plot then we might use

residual exp(date !INIT 0.2 !SUBSECTION plot)

to, specify a common EXP structure across plots.

2.10.4 Equating variance structures !USE t

In some plant breeding applications, it can be convenient to define a variance structure as
the sum of two simpler terms. For example, given 1000 entries representing 50 related
families, where relationships were derived from markers, the full relationship matrix (in-
verse) is dense. But it can be well approximated as the sum of a family component and a
diagonal entry component. The reformulation gives a sparser (faster) formulation. But now
we have two terms to interact with xfa1(dtrial) and both must have the same parameters.
That is, instead of fitting
xfa1(dTrial).grm3(entry)

we fit
xfa1(dTrial).grm1(family) xfa1(dTrial).grm2(entry)

requiring both xfa1 terms have the same parameters.
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2.11 Default variance structures in ASReml

If there are only a few parameters, this can be achieved directly as follows:

!ASSIGN QP !GPFPFP

!ASSIGN QE !=%ABCDEFGH

!ASSIGN QI !INIT 0.72631 0.000 .242713 0.000 .882465 .846305 .04419 .743393

xfa1(dTrial).grm1(family $QP $QE $QI),

xfa1(dTrial).grm2(entry $QP $QE $QI)

However, for a larger term, the number of parameters required may exceed the available
letters in the alphabet. In this case !VCC can be used:

<DATAFILE NAME> !VCC 1

...

xfa1(dTrial).grm1(family $QP $QI),

xfa1(dTrial).grm2(entry) $QP $QI)

21 29 !BLOCKSIZE 8 #parameters 21:28 are equal to parameters 29:36 pairwise

An ever better option in this case is to use just one structure twice. The following code asso-
ciates xfa1(dTrial) in xfa1(dTrial).giv2(entry) with xfa1(dTrial) in xfa1(dTrial).giv1(family)

, that is, both terms point to the one structure definition:

xfa1(dTrial).grm1(family $QP $QI)

xfa1(dTrial !USE xfa1(dTrial)).grm2(entry)

2.11 Default variance structures in ASReml

There are default variance structures in ASReml that allow the linear mixed model to be
specified more succinctly. IDV is the default variance structure for random model terms and
for the residual error terms. For example

– A will be interpreted as idv(A)

– A.B will be interpreted as idv(A.B)

– A.B.C will be interpreted as idv(A.B.C)

– sat(Expt,1).A will be interpreted as sat(Expt,1).idv(A)

– sat(Expt,1).A.B will be interpreted as sat(Expt,1).idv(A.B)

– sat(Expt,1).A.B.C will be interpreted as sat(Expt,1).idv(A.B.C)

In these cases the model term can be followed by an initial value and/or a parametric qualifier
for example A 1 !GP is interpreted as idv(A !INIT 1 !GP) there is always a residual error
term in the model but if it is not explicitly specified it is assumed to be idv(units). If
the consolidated model term definition is incomplete, that is, if some but not all of the
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2.11 Default variance structures in ASReml

components have a variance model function specified, the variance model functions idv()

or id() will be applied to these components depending on the variance model functions
specified. For example

– idv(A).B will be interpreted as idv(A).id(B)

– id(A).B will be interpreted as id(A).idv(B

– id(A).B.C will be interpreted as id(A).idv(B.C)

– idv(A).B.C will be interpreted as idv(A).id(B.C)

Similarly, at the residual level as sat() cannot be converted into a variance function

– sat(Expt,1).id(A).B will be interpreted as sat(Expt,1).id(A).idv(B)

– sat(Expt,1).id(A).B.C will be interpreted as sat(Expt,1).id(A).idv(B.C)

– sat(Expt,1).idv(A).B.C will be interpreted as sat(Expt,1).idv(A).id(B.C)

However, it is good practice to specify variance model functions for the components in model
terms and we encourage the user to do this. ASReml will automatically add a common
variance to consolidated model terms that are specified as correlation models for both R and
G structures, for example,

– id(A) will be converted to idv(A)

– sat(Expt,1).id(units) will be converted to sat(Expt,1).idv(units)

– id(A).ar1(B) will be converted to idv(A).ar1(B)

– ar1(A).ar1(B) will be converted to ar1v(A).ar1(B)

– sat(Expt,1).id(A).ar1(B) will be converted to sat(Expt,1).idv(A).ar1(B)

– sat(Expt,1).ar1(A).ar1(B) will be converted to sat(Expt,1).ar1v(A).ar1(B)

Using NIN example 2 for demonstration (Section 2.7), a more succinct coding of the model
definition would be

yield ∼ mu variety !r repl

residual units

which would result in identical output to the original example. The model could be relaxed
further to

yield ∼ mu variety !r repl
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2.12 Variance models available in ASReml

Table 2.5: Details of the variance models available in ASReml

variance
structure
name

description algebraic
form

number of parameters†

variance

model

function

name

corr hom
variance

het
variance

correlation models

One-dimensional, equally spaced

ID
id identity Cii = 1, Cij = 0, i 6= j 0 1 ω

AR1

ar1 1
st

order
autoregressive

C
ii

= 1, C
i+1,i

= φ
1

C
ij

= φ
1
C

i−1,j
, i > j + 1

|φ
1
| < 1

1 2 1 + ω

AR2

ar2 2
nd

order
autoregressive

C
ii

= 1,

C
i+1,i

= φ
1
/(1− φ

2
)

C
ij

= φ
1
C

i−1,j
+ φ

2
C

i−2,j
, i >

j + 1

|φ
1
| < (1− φ

2
), |φ

2
| < 1

2 3 2 + ω

AR3

ar3 3
rd

order
autoregressive

Cii = 1, Ω = 1−φ2−φ3(φ1 +φ3),

Ci+1,i = (φ1 + φ2φ3)/Ω,

3 4 3 + ω

C
i+2,i

= (φ
1
(φ

1
+ φ

3
) + φ

2
(1− φ

2
))/Ω,

C
ij

= φ
1
C

i−1,j
+φ

2
C

i−2,j
+φ

3
C

i−3,j
, i > j+2

|φ
1
| < (1− φ

2
), |φ

2
| < 1, |φ

3
| < 1

SAR
sar1 symmetric

autoregressive
Cii = 1,

Ci+1,i = φ1/(1 + φ2
1
/4)

Cij = φ1Ci−1,j − φ21/4 Ci−2,j ,
i > j + 1

|φ1 | < 1

1 2 1 + ω

SAR2
sar2 constrained

autoregressive
3
used for
competition

as for AR3 using

φ1 = γ1 + 2γ2 ,

φ2 = −γ2(2γ1 + γ2),

φ3 = γ1γ
2
2
,

2 3 2 + ω
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Details of the variance models available in ASReml

variance
structure
name

description algebraic
form

number of parameters†

variance

model

function

name

corr hom
variance

het
variance

MA1

ma1 1
st

order
moving aver-
age

Cii = 1,

Ci+1,i = −θ1/(1 + θ2
1
)

Cji = 0, j > i+ 2

|θ1 | < 1

1 2 1 + ω

MA2

ma2 2
nd

order
moving aver-
age

C
ii

= 1,

C
i+1,i

= −θ
1
(1−θ

2
)/(1 +θ2

1
+θ2

2
)

C
i+2,i

= −θ
2
/(1 + θ2

1
+ θ2

2
)

C
ji

= 0, j > i+ 2

θ
2
± θ

1
< 1

|θ
1
| < 1, |θ

2
| < 1

2 3 2 + ω

ARMA
arma autoregressive

moving aver-
age

Cii = 1,

Ci+1,i = (θ − φ)(1− θφ)/(1 +

θ2 − 2θφ)

Cji = φCj−1,i , j > i+ 1

|θ| < 1, |φ| < 1

2 3 2 + ω

CORU
coru uniform

correlation
Cii = 1, Cij = φ, i 6= j 1 2 1 + ω

CORB
corb banded

correlation
C

ii
= 1

C
i+j,i

= φ
j
, 1 ≤ j ≤ ω − 1

|φj | < 1

ω − 1 ω 2ω − 1

CORG

corg general
correlation
CORGH = US

C
ii

= 1

C
ij

= φ
ij
, i 6= j

|φij | < 1

ω(ω−1)
2

ω(ω−1)
2 +1 ω(ω−1)

2
+ ω
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Details of the variance models available in ASReml

variance
structure
name

description algebraic
form

number of parameters†

variance

model

function

name

corr hom
variance

het
variance

One-dimensional unequally spaced

EXP
exp exponential Cii = 1

Cij = φ|xi−xj |, i 6= j

xi are coordinates
0 < φ < 1

1 2 1 + ω

GAU
gau gaussian C

ii
= 1

C
ij

= φ(xi−xj)
2

, i 6= j

xi are coordinates

0 < φ < 1

1 2 1 + ω

Two-dimensional irregularly spaced

x and y vectors of coordinates

θij = min(dij/φ1, 1)

dij is euclidean distance

IEXP
iexp isotropic

exponential

Cii = 1

Cij = φ|xi−xj |+|yi−yj |, i 6= j

0 < φ < 1

1 2 1 + ω

IGAU
igau isotropic

gaussian

C
ii

= 1

Cij = φ(xi−xj)
2+(yi−yj)2 , i 6= j

0 < φ < 1

1 2 1 + ω

IEUC
ieuc isotropic

euclidean

C
ii

= 1

C
ij

= φ
√

(xi−xj)2+(yi−yj)2 , i 6= j

0 < φ < 1

1 2 1 + ω

LVR
lvr linear variance Cij = (1− θij )

0 < φ1

1 2 1 + ω
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Details of the variance models available in ASReml

variance
structure
name

description algebraic
form

number of parameters†

variance

model

function

name

corr hom
variance

het
variance

SPH
sph spherical Cij = 1− 3

2θij + 1
2θ

3
ij

0 < φ1

1 2 1 + ω

CIR
cir circular (Web-

ster & Oliver,

2001, p 113)

Cij = 1

− 2
π (θij

√
1− θ2

ij
+ sin−1θij )

0 < φ
1

1 2 1 + ω

AEXP
aexp anisotropic ex-

ponential
C

ii
= 1

C
ij

= φ|xi−xj |
1

φ|yi−yj |
2

0 < φ
1
< 1, 0 < φ

2
< 1

2 3 2+ω

AGAU
agau anisotropic

gaussian
C

ii
= 1

C
ij

= φ(xi−xj)
2

1
φ(yi−yj)

2

2

0 < φ
1
< 1, 0 < φ

2
< 1

2 3 2 + ω

MATk
matk

Matérn with
first 1 ≤ k ≤ 5
parameters
spec-ified by
the user

Cij =Matérn: see text

φ > 0 range, ν shape(0.5)

δ > 0 anisotropy ratio(1),

α anisotropy angle(0),

λ(1|2) metric(2)

k k+1 k + ω

heterogeneous variance models

DIAG
diag diagonal = IDH

idh

Σ
ii

= φ
i

Σ
ij

= 0, i 6= j - - ω

US
us

unstructured
general covari-
ance matrix

Σij = φ
ij

- -
ω(ω+1)

2

OWNk
ownk

user explicitly
forms V and
∂V

- - k
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Details of the variance models available in ASReml

variance
structure
name

description algebraic
form

number of parameters†

variance

model

function

name

corr hom
variance

het
variance

ANTE1
ante1

ANTEk
antek

1
st

k
th

k order
antede-
pendence

1 ≤ k ≤ ω − 1

Σ
−1

= UDU
ᵀ

Dii = di , Dij = 0, i 6= j

Uii = 1, Uij = uij , 1 ≤ j− i ≤ k
U ij = 0, i > j

- -
ω(ω+1)

2

CHOL1
chol1

CHOLk
cholk

1
st

k
th

k order
cholesky

1 ≤ k ≤ ω − 1

Σ = LDLᵀ

Dii = di , Dij = 0, i 6= j

Lii = 1, Lij = lij , 1 ≤ i− j ≤ k

- -
ω(ω+1)

2

FA1
fa1

FAk
fak

1
st

k
th

k order
factor
analytic

Σ = DCD,
C = FF

ᵀ
+E,

F contains k correlation factors
E diagonal
DD = diag (Σ)

- - ω+ω
kω+ω

FACV[1]
facv1

FACVk
facvk

1
st

k
th

k order
factor
analytic
covari-
ance
form

Σ = ΓΓ
ᵀ

+ Ψ,
Γ contains covariance factors
Ψ contains specific variance

- - ω+ω
kω+ω

XFA1
xfa1

XFAk
xfak

1
st

k
th

k order
extended
factor
analytic

Σ = ΓΓ
ᵀ

+ Ψ,
Γ contains covariance factors
Ψ contains specific variance

- - ω+ω
kω+ω
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Details of the variance models available in ASReml

variance
structure
name

description algebraic
form

number of parameters†

variance

model

function

name

corr hom
variance

het
variance

relationship matrices‡

NRM
nrm

relationship matrix derived from pedigree 0 1 -

GRM1
grm1

generalized relationship number 1 0 1 -

...
...

...
...

...

GRM8
grm8

generalized relationship matrix 8 0 1 -

† This is the number of variance structure parameters, ω is the dimension of the matrix. The
homogeneous variance form is specified by appending V to the correlation basename; the heteroge-
neous variance form is specified by appending H to the correlation basename
‡ These will be associated with 1 variance parameter unless used in direct product with another
structure that provides the variance. Appending a v to a name makes it explicit that a variance
parameter is fitted.

2.13 Functions of variance components using names

Rather than identifying parameters by number when specifying functions in VPREDICT ASReml4

allows parameters to be named. When ASReml reads back the variance parameters from
the .asr file, each covariance component, or variance function, is assigned a name. The
functional specification allows a more explicit naming convention than the structural spec-
ification. The full name is usually the covariance function, or its specified contracted form,
prepended by the consolidated model term, or its specified contracted form, and the symbol
;. Exceptions to this rule are single components F, id[v](F) and nrm[v](F) terms which
are reduced to the corresponding single term F, id[v](F) and nrm[v](F). So, for example,
with the random model and residual specification model terms

!r idv(A) ar1v(B) nrm(C).us(Trait) D residual id(units).us(Trait)

The covariance functions with parameters

idv(A),ar1v(B), us(Trait) in nrm(C).us(Trait)

and
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us(Trait) in id(units).us(Trait) are named

idv(A), ar1v(B);ar1v(B), nrm(C).us(Trait);us(Trait), id(units).us(Trait);us(Trait).
If the resulting name is not ambiguous the name can be contracted by reducing the con-
solidated model term to a unique substring or leaving out the consolidated model term
completely. For example, in the example the covariance functions can be represented by
idv(A), ar1v(B), C;us(Trait) and units;us(Trait), respectively. Individual parameters
within a covariance component can be specified by number , or sequence of numbers (n:m) by
appending these in square braces, for example, C;us(Trait)[3] or units;us(Trait)[4:6].
If the residual directive is not used, the default R structure parameters are effectively named
Residual.

2.13.1 A detailed example

The following example for a bivariate sire model is a little more complicated. The job file
bsiremod.as contains

...

coop.fmt

ywt fat ~ Trait Trait.(age c(brr) sex sex.age) !r us(Trait).id(sire);us(Trait) !f Tr.grp

residual id(units).us(Trait)

VPREDICT !DEFINE

F phenvar id(units).us(Trait);us(Trait) + us(Trait).sire;us(Trait) # 1:3 + 4:6

F addvar sire;us(Trait) * 4 # 4:6 * 4

H heritA addvar[1] phenvar[1] # 10 7

H heritB addvar[3] phenvar[3] # 12 9

R phencorr phenvar # 7 8 9

R gencorr addvar # 4:6

The relevant lines of the .asr file are

Model_Term Sigma Sigma Sigma/SE % C

id(units).us(Trait) 8140 effects

Trait US_V 1 1 23.2055 23.2055 44.44 0 P

Trait US_C 2 1 2.50402 2.50402 18.56 0 P

Trait US_V 2 2 1.66292 1.66292 32.82 0 P

us(Trait).id(sire) 184 effects

Trait US_V 1 1 1.45821 1.45821 3.66 0 P

Trait US_C 2 1 0.130280 0.130280 1.92 0 P

Trait US_V 2 2 0.344381E-01 0.344381E-01 2.03 0 P

Numbering the parameters reported in bsiremod.asr (and bsiremod.vvp)

1
2
3
4
5
6

error variance for ywt
error covariance for ywt and fat

error variance for fat
sire variance component for ywt
sire covariance for ywt and fat

sire variance for fat

then

F phenvar id(units).us(Trait);us(Trait) + us(Trait).id(sire);us(Trait) or
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F phenvar units;us(Trait) + sire;us(Trait) or F phenvar 1:3 + 4:6

creates new components 7 = 1+4, 8 = 2+5 and 9 = 3+6,

F addvar sire;us(Trait) * 4 or F addvar 4:6 * 4

creates new components 10 = 4 × 4, 11 = 5 × 4 and 12 = 6 × 4,

H heritA addvar[1] phenvar[1] or H heritA 10 7

forms 10 / 7 to give the heritability for ywt,

H heritB addvar[3] phenvar[3] or H heritB 12 9

forms 12 / 9 to give the heritability for fat,

R phencorr phenvar or R phencorr 7 8 9

forms 8 /
√

7 × 9, that is, the phenotypic correlation between ywt and fat,

R gencorr addvar or R gencorr 4:6

forms 5 /
√

4×6, that is, the genetic correlation between ywt and fat.

The resulting .pvc file contains:

id(units).us(Trait) 8140 effects

1 id(units).us(Trait);us(Trait) V 1 1 23.2055 0.522176

2 id(units).us(Trait);us(Trait) C 2 1 2.50402 0.134915

3 id(units).us(Trait);us(Trait) V 2 2 1.66292 0.506679E-01

us(Trait).id(sire) 184 effects

4 us(Trait).id(sire);us(Trait) V 1 1 1.45821 0.398418

5 us(Trait).id(sire);us(Trait) C 2 1 0.130280 0.678542E-01

6 us(Trait).id(sire);us(Trait) V 2 2 0.344381E-01 0.169646E-01

7 phenvar 1 24.664 0.64250

8 phenvar 2 2.6343 0.14763

9 phenvar 3 1.6974 0.52365E-01

10 addvar 4 5.8328 1.5926

11 addvar 5 0.52112 0.27168

12 addvar 6 0.13775 0.67791E-01

heritA = addvar 10/phenvar 7= 0.2365 0.0612

heritB = addvar 12/phenvar 9= 0.0812 0.0394

phenco 2 1 = phenv 8/SQR[phenv 7*phenv 9]= 0.4071 0.0183

gencor 2 1 = addva 11/SQR[addva 10*addva 12]= 0.5814 0.2039

Notice: The parameter estimates are followed by

their approximate standard errors.

The first 8 lines are based on the .asr file.
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3 Examples

This chapter takes examples from the User Guide and compares the functional specification
to the structural specification. Please refer to the User Guide for a comprehensive description
of each dataset and analysis.

Throughout this chapter, this font and colour are used for code that is common to both
specifications. The first three examples (3.1 to 3.3) involve uncorrelated G and R structures,
that is, the IDV variance structure for both the random model terms and the residual error
term. As such, the explicit functional specification can be simplified to the structural specifi-
cation. In these examples, this font and colour are used for STRUCTURAL AND IMPLICIT

FUNCTIONAL code and this font and colour are used for EXPLICIT FUNCTIONAL code.
In the remaining examples (from 3.4), this font and colour are used for STRUCTURAL

code and this font and colour are used for FUNCTIONAL code. Note that, these exam-
ples present two alternative model specifications. To run the jobs retaining both model
specifications in the command file, one of the specifications could be commented out.

3.1 Split plot design - Oats

split plot example

blocks 6 #coded 1...6 in first data field of oats.asd

nitrogen !A 4 #coded alphabetically

subplots * #coded 1...4

variety !A 3 #coded alphabetically

wplots * #coded 1...3

yield

oats.asd !SKIP 2

#STRUCTURAL and IMPLICIT FUNCTIONAL

yield ∼ mu variety nitrogen variety.nitrogen !r blocks blocks.wplots

#EXPLICIT FUNCTIONAL

yield ∼ mu variety nitrogen variety.nitrogen !r idv( blocks) idv(blocks.wplots)

residual idv(units)
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3.3 Source of variability in unbalanced data - Volts

3.2 Unbalanced nested design - Rats

Rats example

dose 3 !A

sex 2 !A

littersize

dam 27

pup 18

weight

rats.asd !DOPATH 1 #change DOPATH argument to select each PATH

!PATH 1

#STRUCTURAL AND IMPLICIT FUNCTIONAL

weight ∼ mu littersize dose sex dose.sex !r dam

#EXPLICIT FUNCTIONAL

weight ∼ mu littersize dose sex dose.sex !r idv(dam)

residual idv(units)

!PATH 2

#STRUCTURAL AND IMPLICIT FUNCTIONAL

weight ∼ mu out(66) littersize dose sex dose.sex !r dam

#EXPLICIT FUNCTIONAL

weight ∼ mu out(66) littersize dose sex dose.sex !r idv(dam)

residual idv(units)

!PATH 3

#STRUCTURAL AND IMPLICIT FUNCTIONAL

weight ∼ mu littersize dose sex !r dam

#EXPLICIT FUNCTIONAL

weight ∼ mu littersize dose sex !r idv(dam)

residual idv(units)

!PATH 4

#STRUCTURAL AND IMPLICIT FUNCTIONAL

Weight ∼ mu littersize dose sex

#EXPLICIT FUNCTIONAL

weight ∼ mu littersize dose sex

residual idv(units)

3.3 Source of variability in unbalanced data - Volts

Voltage data

teststat 4 #4 testing stations tested each regulator

setstat !A #10 setting stations each set 4-8 regulators

regulator 8 #regulators numbered within setting stations

voltage

voltage.asd !skip 1

#STRUCTURAL AND IMPLICIT FUNCTIONAL

voltage ∼ mu !r setstat setstat.regulator teststat setstat.teststat

63



3.4 Balanced repeated measures - Height

#EXPLICIT FUNCTIONAL

voltage ∼ mu !r idv(setstat) idv(setstat.regulator) idv(teststat),

idv(setstat.teststat)

residual idv(units)

The next three examples gives examples of different residual structures.

3.4 Balanced repeated measures - Height

This is plant data multivariate

tmt !A #diseased Healthy

plant 14

y1 y3 y5 y7 y10

grass.asd !skip 1 !ASUV

!Y y1 !G tmt !JOIN #plot the data

First a split plot in time model can be fitted by fitting a units term plus an independent
residual.
#STRUCTURAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt !r units

1 2 0 #1 section 2 dimensions 0 G structure

14 0 ID #14 units no reordering ID structure can reduce to 14

Trait 0 ID

#FUNCTIONAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt !r idv(units)

residual idv(units.Trait)

Next a split plot in time model can be fitted by specifying a CORU variance model for the
R structure
#STRUCTURAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

1 2 0

14

Trait 0 CORU .5

#FUNCTIONAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

residual idv(units).coru(Trait)

Next an exponential (EXP) model to allow the correlation between observations to decline
with time differences.
#STRUCTURAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

1 2 0

14

Trait 0 EXP .5
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3.4 Balanced repeated measures - Height

1 3 5 7 10 #time coordinates

#FUNCTIONAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

residual id(units).exp(Trait !INIT 0.5 !COORD 1 3 5 7 10)

Next an exponential model with heterogeneous variances (EXPH) is fitted
#STRUCTURAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

1 2 0

14 !S2==1

Trait 0 EXPH .5 100 200 300 300 300

1 3 5 7 10

#FUNCTIONAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

residual id(units).exph(Trait !INIT 0.5 100 200 300 300 300 !COORD 1 3 5 7 10 )

Next an antedependence model with heterogeneous variances (EXPH) is fitted
!ASSIGN ANTE1 !< !INIT 60.16

54.65 73.65

91.50 123.3 306.4

89.17 120.2 298.6 431.8

62.21 83.85 208.3 301.2 379.8 !>

#ASSIGN used to make input more legible

residual units.ante(Trait !INIT $ANTE1)

#STRUCTURAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

1 2 0

14 !S2==1

Trait 0 ANTE $ANTE1

#FUNCTIONAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

residual idv(units).ante(Trait !INIT $ANTE1)

Finally, an unstructured (US) matrix is fitted.
!ASSIGN US1 !< !INIT 37.20

23.38 41.55

34.83 61.89 258.9

44.58 79.22 331.4 550.8

43.14 76.67 320.7 533.0 541.4 !>

#STRUCTURAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

1 2 0

14 !S2==1

Trait 0 US $US1

#FUNCTIONAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt
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3.5 Spatial analysis of a field experiment - Barley

residual id(units).us(Trait !INIT $US1)

An alternative way of fitting an unstructured error model for multivariate
data is to omit the !ASUV qualifier.
#STRUCTURAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

1 2 0

0

Trait 0 US * #ASReml generates initial values

#FUNCTIONAL

y1 y3 y5 y7 y10 ∼ Trait tmt Trait.tmt

residual id(units).us(Trait) #ASReml generates initial values

3.5 Spatial analysis of a field experiment - Barley

!EPS !RENAME !ARG 1 2 3

Slate Hall example

Rep 6 #six replicates of 5x5 plots in 2x3 arrangement

RowBlk 30 #rows within replicates numbered across replicates

ColBlk 30 #columns within replicates numbered across replicates

row 10 #field row

column 15 #field column

variety 25

yield

barley.asd !skip 1 !DOPATH $1

!PATH 1 #AR1 x AR1

#STRUCTURAL

y ∼ mu var

1 2

15 column AR1 0.1 #second field is specified so ASReml can sort

10 row AR1 0.1 #records properly into field order

#FUNCTIONAL

y ∼ mu var

residual ar1v(column).ar1(row)

!PATH 2 #AR1 x AR1 + units

#STRUCTURAL

y ∼ mu var !r units

1 2

15 column AR1 0.1

10 row AR1 0.1

#FUNCTIONAL

y ∼ mu var !r idv(units)

residual ar1v(column).ar1(row)

!PATH 3 #incomplete blocks

#STRUCTURAL

y ∼ mu var !r Rep Rowblk Colblk
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3.6 Unreplicated early generation variety trial - Wheat

#FUNCTIONAL

y ∼ mu var !r idv(Rep) idv(Rowblk) idv(Colblk)

residual idv(units)

3.6 Unreplicated early generation variety trial - Wheat

!EPS !RENAME !ARG 1 2 3 4

Tullibigeal Trial !DOPART $1

linenum

yield

weed

column 10

row 67

variety 532 #testlines 1:525, check lines 526:532

wheat.asd !SKIP 1

#AR1 x ID

!PART 1

#STRUCTURAL

y ∼ mu weed mv !r variety

1 2 0

67 row AR1 0.1

10 column ID

#FUNCTIONAL

y ∼ mu weed mv !r idv(variety)

residual ar1v(row).id(col)

#AR1 x AR1

!PATH 2

#STRUCTURAL

y ∼ mu weed mv !r variety

1 2 0

67 row AR1 0.1

10 column AR1 0.1

#FUNCTIONAL

y ∼ mu weed mv !r variety

residual ar1v(row).ar1(col)

!PATH 3 #AR1 x AR1 + column trend

#STRUCTURAL

y ∼ mu weed pol(column,-1) mv !r variety

1 2 0

67 row AR1 0.1

10 column AR1 0.1

#FUNCTIONAL

y ∼ mu weed pol(column,-1) mv !r variety

residual ar1v(row).ar1(col)

!PATH 4 #AR1 x AR1 + nugget + column trend

#STRUCTURAL
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3.7 Paired Case-Control study - Rice

y ∼ mu weed pol(column,-1) mv !r variety units

1 2 0

67 row AR1 0.1

10 column AR1 0.1

#FUNCTIONAL

y ∼ mu weed pol(column,-1) mv !r variety units

residual ar1v(row).ar1(col)

3.7 Paired Case-Control study - Rice

This includes 3 analyses, one using uncorrelated effects, the second allowing heterogeneous
variances to some effects, and thirdly a bivariate analysis. The data for the first two analyses
is in file rice.asd and the data for the third analysis is in ricem.asd. The input for the
first two analyses is:

Bloodworm data Dr M Stevens

pair 132

rootwt

run 66

tmt 2 !A

id

variety 44 !A

rice.asd !skip 1

!DOPATH 1 #change to 2 for second analysis

!PATH 1

#STRUCTURAL AND IMPLICIT FUNCTIONAL

sqrt(rootwt) ∼ mu tmt !r variety variety.tmt run pair run.tmt

#EXPLICIT FUNCTIONAL

sqrt(rootwt) ∼ mu tmt !r idv(variety) idv(variety.tmt) idv(run),

idv(pair) idv(run.tmt)

residual idv(units)

!PATH 2

#STRUCTURAL

sqrt(rootwt) ∼ mu tmt !r variety tmt.variety run pair,

tmt.run uni(tmt,2)

0 0 2

tmt.variety 2

2 0 DIAG .1 .1 !GU

44 0 0

tmt.run 2

2 0 DIAG .1 .1 !GU

66 0 0

#FUNCTIONAL

sqrt(rootwt) ∼ mu tmt !r idv(variety) diag(tmt).idv(variety) idv(run) idv(pair),

diag(tmt).id(run) uni(tmt,2)

residual idv(units)
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3.8 Balanced longitudinal data - Random coefficients and cubic smoothing splines -
Oranges

The input for the third analysis is
id

pair 132

run 66

variety 44 !A

yc #Control tray

ye #Treated tray

ricem.asd !skip 1

!X yc !Y ye

tabulate sqrt(yc) sqrt(ye) ∼ var run !COUNT

#STRUCTURAL

sqrt(yc) sqrt(ye) ∼ Trait !r Trait.variety Trait.run

1 2 2

132 !S2==1

Trait 0 US 2.21 1.1 2.427

Trait.variety 2

2 0 US 1.401 1 1.477

44 0 0

Trait.run 2

2 0 US .79 .5 2.887

66 0 0

PREDICT variety

#FUNCTIONAL

sqrt(yc) sqrt(ye) ∼ Trait !r us(Trait).id(variety) us(Trait).id(run)

residual id(units).us(Trait)

PREDICT variety

3.8 Balanced longitudinal data - Random coefficients and
cubic smoothing splines - Oranges

This includes initial analyses on one tree,random coefficient effect and smoothing splines
models
!RENAME !ARG 1 #First analysis: replace with 2 for next analysis

!DOPART $1

this is the orange data,

seq #record number is not used

tree 5

age #118 484 664 1004 1231 1372 1582

circ

season !L Spring Autumn

!PART 1 #INDIVIDUAL TREE

orange.asd !skip 1 !filter tree !select 1

!PART 2

orange.asd !skip 1

!PART 0
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3.9 Generalised linear (mixed) models

!SPLINE spl(age,7) 118 484 664 1004 1231 1372 1582

!PVAL age 150 200:1500

!PATH 1

#STRUCTURAL AND IMPLICIT FUNCTIONAL

circ ∼ mu age !r spl(age,7)

#EXPLICIT FUNCTIONAL

circ ∼ mu age !r idv(spl(age,7))

residual idv(units)

!PATH 2

#STRUCTURAL

circ ∼ mu age !r !{tree 4.6 age.tree .000094!} spl(age,7) .1,

spl(age,7).tree 2.3 fac(age) 13.9

0 0 1

tree 2

2 0 US 4.6 .00001 .000094

5 0 0

#FUNCTIONAL

circ ∼ mu age !r str(tree age.tree us(2).tree !INIT 4.6 .00001 .000094),

idv(spl(age,7) !INIT .1) idv(spl(age,7).tree !INIT 2.3),

idv(fac(age) !INIT 13.9)

residual idv(units)

3.9 Generalised linear (mixed) models

The following is a comparison of the structural and functional specifications for the two
examples in Section 16.10 of the ASReml User Guide: Structural Specification. These examples
are not presented in full in the ASReml User Guide: Functional Specification.

3.9.1 Binomial analysis of Footrot score

Lamb data from ARG thesis page 177-8

Year GRP 5 !V99=V2 !==4 !M1

SEX SIRE !I

Total

FS1 FS2 Scald !+V99 Rot !+V99

pRot !=Rot !/Total

#1 1 1 101 39 33 6 6 1

LAMB.DAT !skip 1

!DF 1904 !YSS 62.54249

#STRUCTURAL AND IMPLICIT FUNCTIONAL

pRot !TOTAL=Total ∼ mu SEX GRP !r SIRE

#EXPLICIT FUNCTIONAL

pRot !TOTAL=Total ∼ mu SEX GRP !r idv(SIRE)

residual idv(units)
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3.10 Multivariate animal genetics data - Sheep

An analysis of footrot as a binomial variable using the logistic link is performed by the model
line (and dropping the !DF qualifier)
#STRUCTURAL AND IMPLICIT FUNCTIONAL

Rot !BIN !TOTAL=Total mu SEX GRP SEX.GRP !r SIRE .16783

#EXPLICIT FUNCTIONAL

Rot !BIN !TOTAL=Total mu SEX GRP SEX.GRP !r idv(SIRE !INIT .16783)

3.9.2 Bivariate analysis of Footrot score

Lamb data from ARG thesis page 177-8

Year GRP 5 !V99=V2 !==4 !M 1

SEX SIRE !I

Score1

Score2 Scald !+V99 Rot !+V99

YVar

binnor.asd !skip 1 !ASUV !MAXIT 40

#STRUCTURAL

Score1 YVar !bin ∼ Trait.SEX Trait.GRP !r Trait.SIRE

1 2 1

2513

2 0 US !GFPP

1 .01 0.25

Trait.SIRE 2

Trait 0 US 0.015 0.01 1.05

SIRE 0 ID

#FUNCTIONAL

Score1 YVar !bin ∼ Trait.SEX Trait.GRP !r us(Trait).id(SIRE)

residual id(units).us(Trait !INIT 1 -.01 .25 !GFPP)

3.10 Multivariate animal genetics data - Sheep

!RENAME 1 !ARG 1 2 3 4 5 #Does 5 runs one for each trait

Multivariate Sire & Dam model

!DOPATH $1

!IF $1 == 1 !ASSIGN YV wwt #sets up dependent variable to each trait in turn

!IF $1 == 2 !ASSIGN YV ywt

!IF $1 == 3 !ASSIGN YV gfw

!IF $1 == 4 !ASSIGN YV fdm

!IF $1 == 5 !ASSIGN YV fat

tag

sire 92 !I

dam 3561 !I

grp 49

sex

brr 4

litter 4871
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3.10 Multivariate animal genetics data - Sheep

age

wwt !M0 # !M0 identifies missing values

ywt !M0

gfw !M0

fdm !M0

fat !M0

coop.fmt

#STRUCTURAL

!PATH 1 2 3 5

$YV mu age brr sex age.sex !r sire dam lit age.grp sex.grp !f grp #traits are substituted

for $YV

!PATH 4 #leaves out sex.grp for fdm

$YV mu age brr sex age.sex !r idv(sire) idv(dam) idv(lit) idv(age.grp) !f grp #$fdm is substit

#FUNCTIONAL

!PATH 1 2 3 5

$YV mu age brr sex age.sex !r idv(sire) idv(dam) idv(lit) idv(age.grp) idv(sex.grp) !f grp

#traits are substituted for$YV

!PATH 4 #leaves out sex.grp for fdm

$YV mu age brr sex age.sex !r idv(sire) idv(dam) idv(lit) idv(age.grp) !f grp #$fdm is

#substituted for $YV

!RENAME 1 !ARG 3 #CHANGE 1 TO 2 OR 3 FOR OTHER PATHS

Multivariate Sire & Dam

!DOPATH $1

tag

sire 92 !I

dam 3561 !I

grp 49

sex

brr 4

litter 4871

age

wwt !M0 # !M0 identifies missing values

ywt !M0

gfw !M0

fdm !M0

fat !M0

!PATH 1 // coop.fmt

!PATH 2 // coop.fmt !CONTINUE

!PATH 3 // coop.fmt !CONTINUE

!PATH 0 #USING SUBSET TO SET UP COMBINATIONS OF TRAITS USED IN MODEL

!SUBSET TrDam123 Trait 1 2 3 0 0

!SUBSET TrLit1234 Trait 1 2 3 4 0

!SUBSET TrAG1245 Trait 1 2 4 5

!SUBSET TrSG123 Trait 1 2 3 0 0

!SUBSET TrDam12 Trait 1 2 0 0 0

!SUBSET TrDa12 Trait 1 2 0 0 0

#USING !ASSIGN TO MAKE SPECIFICATION CLEARER

72



3.10 Multivariate animal genetics data - Sheep

#STRUCTURAL

#ASSIGN SIRE DAM LITTER AND RESIDUAL INITIAL VALUES FROM UNIVARIATE ANALYSES

!ASSIGN SDIAGI 0.608 1.298 0.015 0.197 0.035 #Initial sire variances

!ASSIGN DDIAGI 2.2 4.14 0.018

!ASSIGN LDIAGI 3.74 0.97 0.019 0.941

!ASSIGN RUSI !< 9.27 0.0 16.48 0.0 0.0 0.14

0.0 0.0 0.0 3.37 0.0 0.0 0.0 0.0 1.14 !>

!ASSIGN VARS !<

TrAG1245.age.grp,

TrSG123.sex.grp !>

#FUNCTIONAL

#ASSIGN SIRE DAM LITTER AND RESIDUAL INITIAL VALUES FROM UNIVARIATE ANALYSES

!ASSIGN SDIAGI !INIT 0.608 1.298 0.015 0.197 0.035 #Initial sire variances

!ASSIGN DDIAGI !INIT 2.2 4.14 0.018

!ASSIGN LDIAGI !INIT 3.74 0.97 0.019 0.941

!ASSIGN RUSI !< !INIT 9.27 0.0 16.48 0.0 0.0 0.14

0.0 0.0 0.0 3.37 0.0 0.0 0.0 0.0 1.14 !>

!ASSIGN VARF !<

diag(TrAG1245 !INIT 0.0024 0.0019 0.0020 0.00026).age.grp,

diag(TrSG123 !INIT 0.93 16.0 0.28).sex.grp !>

!PATH 1 #DIAGONAL FOR SIRE DAM AND LITTER UNSTRUCTURED FOR RESIDUAL

#STRUCTURAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARS,

Trait.sire TrDam123.dam TrLit1234.lit ,

!f Trait.grp

1 2 5 #1 R STRUCTURE WITH 2 COMPONENTS AND 5 G STRUCTURES

0 0 0 #INDEPENDENT ACROSS ANIMALS

Trait 0 US !GP #UNSTRUCTURED TRAIT MATRIX INITIAL VALUES FROM UNIVARIATE ANALYSES

$RUSI

TrAG1245.age.grp 2

TrAG1245 0 DIAG 0.0024 0.0019 0.0020 0.00026

age.grp 0 ID

TrSG123.sex.grp 2

TrSG123 0 DIAG 0.93 16.0 0.28

sex.grp 0 ID

Trait.sire 2

Trait 0 DIAG $SDIAGI

sire 0 ID

TrDam123.dam 2

TrDam123 0 DIAG $DDIAGI

dam 0 ID

TrLit1234.lit 2

TrLit1234 0 DIAG $LDIAGI

lit 0 ID

#FUNCTIONAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,

diag(Trait $SDIAGI).sire diag(TrDam123 $DDIAGI).dam diag(TrLit1234 $LDIAGI ).lit,

!f Trait.grp

residual id(units).us(Trait $RUSI)
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3.10 Multivariate animal genetics data - Sheep

!PATH 2 #CHANGE DIAGONAL TO XFA1 FOR SIRE DAM AND LITTER

#STRUCTURAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARS,

xfa(Trait,1).sire xfa(TrDam123,1).dam xfa(TrLit1234,1).lit ,

!f Trait.grp mv

1 2 5 #1 R STRUCTURE WITH 2 COMPONENTS AND 5 G STRUCTURES

0 0 0 #INDEPENDENT ACROSS ANIMALS

Trait 0 US *

TrAG1245.age.grp 2

TrAG1245 0 DIAG 0.0024 0.0019 0.0020 0.00026

age.grp 0 ID

TrSG123.sex.grp 2

TrSG123 0 DIAG 0.93 16.0 0.28

sex.grp 0 ID

xfa(Trait,1).sire 2

xfa(Trait,1) 0 XFA1 * !GP

sire 0 ID

xfa(TrDam123,1).dam 2

xfa(TrDam123,1) 0 XFA1 * !GP

dam 0 ID

xfa(TrLit1234,1).lit 2

xfa(TrLit1234,1) 0 XFA1 * !GP

lit 0 ID

#FUNCTIONAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,

xfa1(Trait).sire xfa1(TrDam123).dam xfa1(TrLit1234).lit ,

!f Trait.grp mv

residual id(units).us(Trait)

!PATH 3 #CHANGE XFA1 TO UNSTRUCTURED FOR SIRE AND LITTER

#STRUCTURAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARS,

Trait.sire xfa(TrDam123,1).dam TrLit1234.lit ,

!f Trait.grp mv

1 2 5 #1 R STRUCTURE WITH 2 COMPONENTS AND 5 G STRUCTURES

0 0 0 #INDEPENDENT ACROSS ANIMALS

Trait 0 US *

TrAG1245.age.grp 2

TrAG1245 0 DIAG 0.0024 0.0019 0.0020 0.00026

age.grp 0 ID

TrSG123.sex.grp 2

TrSG123 0 DIAG 0.93 16.0 0.28

sex.grp 0 ID
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3.10 Multivariate animal genetics data - Sheep

Trait.sire 2

Trait 0 US !GP *

sire 0 ID

xfa(TrDam123,1).dam 2

xfa(TrDam123,1) 0 XFA1 *

dam 0 ID

TrLit1234.lit 2

TrLit1234 0 US *

lit 0 ID

#FUNCTIONAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,

us(Trait).sire xfa1(TrDam123).dam us(TrLit1234).lit ,

!f Trait.grp mv

residual id(units).us(Trait)

!PATH 3 #WORK OUT FUNCTIONS OF PARAMETERS FOR PATH 3

VPREDICT !DEFINE

X Damv 38:43 # defines 54:59

F phenWYG 1:6 + 23:28 + 54:59 + 44:49 # defines 60:65

F phenD 7:10 + 29:32 + 50:53 # defines 66:69

F phenF 11:15 + 33:37 # defines 70:74

F Direct 23:37 * 4. # defines 75:89

F Maternal 54:59 - 23:28 # defines 90:95

F Resid 60:74 - 75:89 # defines 96:110

H WWTh2 75 60

H YWTh2 77 62

H GFWh2 80 65

H FDMh2 84 69

H FATh2 89 74

R GenCor 23:37

R MatCor 90:95

#STRUCTURAL

VPREDICT !DEFINE

X Damv xfa(TrDam123,1) # defines 54:59

F phenWYG Residual[1:6]+sire[1:6]+TrLit1234.lit[1:6]+Damv

# defines 60:65= 1:6 + 23:28 + 44:49 + 54:59

F phenD Residual[7:10]+Trait.sire[7:10]+ TrLit1234.lit[7:10]

# defines 66:69= 7:10 + 29:32 + 50:53

F phenF Residual[11:15]+Trait.sire[11:15]

# defines 70:74= 11:15 + 33:37

F Direct Trait.sire *4. #defines 75: 89= 23:37 * 4.

F Maternal Damv -Trait[1:6] #defines 90: 95= 54:59 - 23:28
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F residWYG phenWYG - Trait.sire[1:6] #defines 96:101= 60:65 - 23:28

F residWYG phenD - Trait.sire[7:10] #defines 102:105= 66:69 - 29:32

F residWYG phenF - Trait.sire[11:15] #defines 106:110= 70:74 - 33:37

#defines 96:110= 60:74 - 23-37

H WWTh2 Direct[1] phenWYG[1] # 75 60

H YWTh2 Direct[3] phenWYG[3] # 77 62

H GFWh2 Direct[6] phenWYG[6] # 80 65

H FDMh2 Direct[10] phenD[4] # 84 69

H FATh2 Direct[15] phenF[5] # 89 74

R GenCor Trait.sire # 23:37

R MatCor Maternal # 90:95

#FUNCTIONAL

VPREDICT !DEFINE

#USING !ASSIGN TO GIVE CONCISE VPREDICT

!ASSIGN lusT lit;us(TrLit1234) # us(TrLit1234).id(lit);us(TrLit1234)

!ASSIGN susT sire;us(Trait) #us(Trait).id(sire);us(Trait)

!ASSIGN uusT id(units).us(Trait);us(Trait)

X Damv xfa1(TrDam123) # defines 54:59

F phen $uusT[1:6]+$susT[1:6]+$lusT[1:6]+xfa1(TrDam123)

# defines [1:6] elements of phen

# defines 60:65= 1:6 + 23:28 + 44:49 + 54:59

F phen $uusT[7:10]+$susT[7:10]+ $lusT[7:10]

# defines [7:10] elements of phen

# defines 66:69= 7:10 + 29:32 + 50:53

F phen $uusT[11:15]+$susT[11:15]

# defines [11:15] elements of phen

# defines 70:74= 11:15 + 33:37

F Direct $susT *4. #defines 75: 89= 23:37 * 4.

F Maternal Damv -$susT[1:6] #defines 90: 95= 54:59 - 23:28

F resid phen - $susT #defines 96:110= 60:74 - 23-37

H WWTh2 Direct[1] phen[1] #defines 111= 75/ 60

H YWTh2 Direct[3] phen[3] #defines 112= 77/ 62

H GFWh2 Direct[6] phen[6] #defines 113= 80/ 65

H FDMh2 Direct[10] phen[10] #defines 114= 84/ 69

H FATh2 Direct[15] phen[15] #defines 115= 89/ 74

R GenCor $susT #defines 116:125 from 23:37

R MatCor Maternal #defines 126:129 from 90:95

!RENAME 1 !ARG 3 #CHANGE 1 TO 2,3,4 OR 5 FOR OTHER PATHS

Multivariate Animal model

!DOPATH $1

tag !P

sire 92 !I

dam !P
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grp 49

sex

brr 4

litter 4871

age

wwt !M0 # !M0 identifies missing values

ywt !M0

gfw !M0

fdm !M0

fat !M0

pcoop.fmt # read pedigree from first three fields

!PATH 1 // pcoop.fmt

!PATH 2 // pcoop.fmt !CONTINUE !MAXI 40

!PATH 3 // pcoop.fmt !CONTINUE !MAXI 40

!PATH 4 // pcoop.fmt !CONTINUE !MAXI 40

!PATH 5 // pcoop.fmt !CONTINUE !MAXI 40

!PATH 0 #USING SUBSET TO ALLOW EASY TRAIT ASSOCIATION WITH FACTORS IN MODEL

!SUBSET TrDam12 Trait 1 2 0 0 0

!SUBSET TrLit1234 Trait 1 2 3 4 0

!SUBSET TrAG1245 Trait 1 2 4 5

!SUBSET TrSG123 Trait 1 2 3 0 0

!SUBSET TrDa123 Trait 1 2 3 0 0

#USING !ASSIGN TO MAKE SPECIFICATION CLEARER

#STRUCTURAL

!ASSIGN TDIAGI 2.3759 6.2256 0.60075E-01 0.63086 0.13069 !GP

!ASSIGN DDIAGI 2.1584 2.3048 !GP

!ASSIGN LDIAGI 3.55265 2.55777 0.191238E-01 0.897272 !GP

!ASSIGN RUSI !< !GP

13.390 9.0747 17.798 0.31961 0.87272 0.13452

0.71374 1.4028 0.23141 4.0677 0.72812 2.0831 0.75977E-01 0.25782 1.5337 !>

!ASSIGN VARS TrAG1245.age.grp TrSG123.sex.grp

#FUNCTIONAL

!ASSIGN TDIAGI !INIT 2.3759 6.2256 0.60075E-01 0.63086 0.13069 !GP

!ASSIGN DDIAGI !INIT 2.1584 2.3048 !GP

!ASSIGN LDIAGI !INIT 3.55265 2.55777 0.191238E-01 0.897272 !GP

!ASSIGN RUSI !< !INIT 13.390 9.0747 17.798 0.31961 0.87272 0.13452

0.71374 1.4028 0.23141 4.0677 0.72812 2.0831 0.75977E-01 0.25782 1.5337 !GP !>

!ASSIGN VARF !<

diag(TrAG1245 !INIT 0.0024 0.0019 0.0020 0.00026).age.grp,

diag(TrSG123 !INIT 0.93 16.0 0.28).sex.grp !>
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!PATH 1 #USING DIAG FOR TAG,DAM AND LIT US FOR RESIDUAL

#STRUCTURAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARS,

Trait.tag TrDam12.dam TrLit1234.lit ,

!f Trait.grp

1 2 5 #1 R STRUCTURE WITH 2 COMPONENTS AND 5 G STRUCTURES

0 0 0 #INDEPENDENT ACROSS ANIMALS

Trait 0 US $RUSI #UNSTRUCTURED TRAIT MATRIX INITIAL VALUES FROM UNIVARIATE ANALYSETrAG1245.age.grp

2

TrAG1245 0 DIAG 0.0024 0.0019 0.0020 0.00026

age.grp 0 ID

TrSG123.sex.grp 2

TrSG123 0 DIAG 0.93 16.0 0.28

sex.grp 0 ID

Trait.tag 2

Trait 0 DIAG $TDIAGI

tag 0 AINV

TrDam12.dam 2

TrDam12 0 DIAG $DDIAGI

dam 0 ID

TrLit1234.lit 2

TrLit1234 0 DIAG $LDIAGI

lit 0 ID

#FUNCTIONAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,

diag(Trait $TDIAGI).nrm(tag) diag(TrDam12 $DDIAGI).dam diag(TrLit1234 $LDIAGI).lit ,

!f Trait.grp

residual id(units).us(Trait $RUSI)

!PATH 2 #USING XFA1 FOR TAG,DAM AND LIT US FOR RESIDUAL

#STRUCTURAL

wwt ywt gfw fdm fat !SIGMAP Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARS,

xfa(Trait,1).tag xfa(TrDam12,1).dam xfa(TrLit1234,1).lit ,

!f Trait.grp

1 2 5

0 0 0

Trait 0 US $RUSI

TrAG1245.age.grp 2

TrAG1245 0 DIAG 0.0024 0.0019 0.0020 0.00026

age.grp 0 ID

TrSG123.sex.grp 2

TrSG123 0 DIAG 0.93 16.0 0.28

sex.grp 0 ID
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xfa(Trait,1).tag 2

xfa(Trait,1) 0 XFA1 * !GP

tag 0 AINV

xfa(TrDam12,1).dam 2 * !GP

xfa(TrDam12,1) 0 XFA1

dam 0 ID

xfa(TrLit1234,1).lit 2 * !GP

xfa(TrLit1234,1) 0 XFA1

lit 0 ID

#FUNCTIONAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,

xfa1(Trait).nrm(tag) xfa1(TrDam12).dam xfa1(TrLit1234).lit ,

!f Trait.grp

residual id(units).us(Trait)

!PATH 3

#STRUCTURAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARS,

Trait.tag xfa(TrDam12,1).dam TrLit1234.lit ,

!f Trait.grp

1 2 5

0 0 0

Trait 0 US !GP *

TrAG1245.age.grp 2

TrAG1245 0 DIAG 0.0024 0.0019 0.0020 0.00026

age.grp 0 ID

TrSG123.sex.grp 2

TrSG123 0 DIAG 0.93 16.0 0.28

sex.grp 0 ID

Trait.tag 2

Trait 0 US * !GP

tag 0 AINV

xfa(TrDam12,1).dam 2

xfa(TrDam12,1) 0 XFA1 * !GP

dam 0 ID

TrLit1234.lit 2

TrLit1234 0 US * !GP

lit 0 ID

#FUNCTIONAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,

us(Trait).nrm(tag) xfa1(TrDam12).dam us(TrLit1234).lit ,

!f Trait.grp

residual id(units).us(Trait)

!PATH 4 #FITTING XFA2 FOR TAG

#STRUCTURAL
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wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARS,

xfa(Trait,2).tag xfa(TrDam12,1).dam TrLit1234.lit ,

!f Trait.grp

1 2 5

0 0 0

Trait 0 US !GP

TrAG1245.age.grp 2

TrAG1245 0 DIAG 0.0024 0.0019 0.0020 0.00026

age.grp 0 ID

TrSG123.sex.grp 2

TrSG123 0 DIAG 0.93 16.0 0.28

sex.grp 0 ID

xfa(Trait,2).tag 2

xfa(Trait,2) 0 XFA2 *!GP

tag 0 AINV

xfa(TrDam12,1).dam 2

xfa(TrDam12,1) 0 XFA1 * !GP

dam 0 ID

TrLit1234.lit 2

TrLit1234 0 US * !GP

lit 0 ID

#FUNCTIONAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,

xfa2(Trait).nrm(tag) xfa1(TrDam12).dam us(TrLit1234).lit ,

!f Trait.grp

residual id(units).us(Trait)

!PATH 5 #FITTING XFA3 FOR TAG

#STRUCTURAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARS,

xfa(Trait,3).tag xfa(TrDam12,1).dam TrLit1234.lit ,

!f Trait.grp

1 2 5

0 0 0

Trait 0 US !GP

TrAG1245.age.grp 2

TrAG1245 0 DIAG 0.0024 0.0019 0.0020 0.00026

age.grp 0 ID

TrSG123.sex.grp 2

TrSG123 0 DIAG 0.93 16.0 0.28

sex.grp 0 ID

xfa(Trait,3).tag 2

xfa(Trait,3) 0 XFA3 * !GP

tag 0 AINV

xfa(TrDam12,1).dam 2

xfa(TrDam12,1) 0 XFA1 * !GP

dam 0 ID
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TrLit1234.lit 2

TrLit1234 0 US * !GP

lit 0 ID

!PATH 5

#FUNCTIONAL

wwt ywt gfw fdm fat Trait Trait.age Trait.brr Trait.sex Trait.age.sex !r $VARF,

xfa3(Trait).nrm(tag) xfa1(TrDam12).dam us(TrLit1234).lit ,

!f Trait.grp

residual id(units).us(Trait)
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