!CONTINUE !RENAME !ARG 1 2 // !DOPATH $1
Multivariate Animal model
tag !P
sire
dam !P
grp 49
sex
brr 4
litter 4871
age wwt !m0 ywt !m0 # !M0 identifies missing values
gfw !m0 fdm !m0 fat !m0
coop.fmt # read pedigree from first three fields
coop.fmt !MAXIT 20 !STEP 0.01
!EXTRA 4 # Force 4 more iterations after convergence criterion met
!SUBSET DamTr Trait 1 2 3 0 0
!SUBSET LitTr Trait 1 2 3 4
wwt ywt gfw fdm fat ~ Trait Tr.age Tr.brr Tr.sex Tr.age.sex,
!r at(Trait,1,2,4,5).age.grp at(Trait,1,2,3,5).sex.grp ,
!PATH 1 // !r xfa1(Tr).nrm(tag) xfa1(DamTr).dam xfa1(LitTr).lit +
!PATH 2 // !r us(Tr).nrm(tag) xfa1(DamTr).dam us(LitTr).lit +
!PATH 0 // !f Tr.grp
units.us(Trait)
The term
tag !P
dam !P
age wwt !m0 ywt !m0
gfw !m0 fdm !m0 fat !m0
Reading pedigree file pcoop.fmt: skipping 0 lines
10696 identities in the pedigree over 1 generations.
For first parent labelled Sire, second labelled Dam
Sire Sire of Sire Dam of Sire Dam Sire of Dam Dam of Dam
92 0 0 3561 0 0
Using an adapted version of Meuwissen Luo GSE 1992 305-313:
PEDIGREE [pcoop.fmt ] has 10696 identities, 29474 Non zero elements
GIV0 NRM 10696 7 -4881.84
QUALIFIERS: !MAXIT 20 !STEP 0.01
QUALIFIERS: !EXTRA 4
QUALIFIERS: !SUBSET DamTr Trait 1 2 3 0 0
QUALIFIERS: !SUBSET LitTr Trait 1 2 3 4 0
Notice: !SUBGROUP/!SUBSET list for LitTr is longer than declared size of Trait
QUALIFIER: !DOPART 1 is active
Reading coop.fmt FREE FORMAT skipping 0 lines
Multivariate analysis of wwt ywt gfw fdm
Multivariate analysis of fat
Summary of 7040 records retained of 7043 read
Notice: 3 records dropped because all traits are missing.
Model term Size #miss #zero MinNon0 Mean MaxNon0 StndDevn
1 tag !P 10696 0 0 3 5377 10696
2 sire 0 0 1.0000 48.04 92.00 25.04
3 dam !P 10696 0 0 1 5195 10695
4 grp 49 0 0 1 19.8388 49
5 sex 0 0 1.0000 1.542 2.000 0.4982
6 brr 4 0 0 1 2.3588 4
7 litter 4871 0 0 1 2448.6331 4871
8 age 0 0 17.00 48.64 111.0 13.87
9 wwt Variate 10 0 8.000 28.12 50.50 5.915
10 ywt Variate 2974 0 22.50 47.72 80.00 8.213
11 gfw Variate 2996 0 0.7000 3.040 6.700 0.8494
12 fdm Variate 6070 0 26.00 31.67 41.30 2.891
13 fat Variate 4856 0 0.5000 4.778 18.00 2.118
..
Notice: LogL values are reported relative to a base of -20000.000
Notice: 76 singularities detected in design matrix.
1 LogL=-5486.37 S2= 1.00000 18085 df
2 LogL=-5420.91 S2= 1.00000 18085 df : 3 components restrained
3 LogL=-4813.91 S2= 1.00000 18085 df : 3 components restrained
4 LogL=-3579.43 S2= 1.00000 18085 df : 1 components restrained
5 LogL=-2370.56 S2= 1.00000 18085 df : 1 components restrained
6 LogL=-1860.96 S2= 1.00000 18085 df : 2 components restrained
7 LogL=-1556.94 S2= 1.00000 18085 df : 1 components restrained
8 LogL=-1493.54 S2= 1.00000 18085 df : 1 components restrained
9 LogL=-1451.70 S2= 1.00000 18085 df : 1 components restrained
10 LogL=-1443.09 S2= 1.00000 18085 df : 1 components restrained
..
19 LogL=-1420.07 S2= 1.00000 18085 df : 1 components restrained
20 LogL=-1420.10 S2= 1.00000 18085 df : 1 components restrained
- - - Results from analysis of wwt ywt gfw fdm fat - - -
Akaike Information Criterion 42928.20 (assuming 44 parameters).
Bayesian Information Criterion 43271.52
Model_Term Sigma Sigma Sigma/SE % C
Trait_1.age.grp IDV_V 49 0.136208E-02 0.136208E-02 2.03 0 P
Trait_2.age.grp IDV_V 49 0.951316E-03 0.951316E-03 1.19 0 P
Trait_4.age.grp IDV_V 49 0.165902E-02 0.165902E-02 1.11 0 P
Trait_5.age.grp IDV_V 49 0.221494E-03 0.221494E-03 1.72 0 P
Trait_1.sex.grp IDV_V 49 0.928419 0.928419 2.90 0 P
Trait_2.sex.grp IDV_V 49 15.5311 15.5311 3.50 0 P
Trait_3.sex.grp IDV_V 49 0.280573 0.280573 3.71 0 P
Trait_5.sex.grp IDV_V 49 1.42344 1.42344 1.80 0 P
units.us(Trait) 35200 effects
Trait US_V 1 1 8.05905 8.05905 18.52 0 P
Trait US_C 2 1 5.63073 5.63073 10.66 0 P
Trait US_V 2 2 14.0103 14.0103 14.75 0 P
Trait US_C 3 1 0.229120 0.229120 5.45 0 P
Trait US_C 3 2 0.604319 0.604319 9.36 0 P
Trait US_V 3 3 0.115554 0.115554 13.49 0 P
Trait US_C 4 1 0.965394 0.965394 2.57 0 P
Trait US_C 4 2 1.47917 1.47917 2.79 0 P
Trait US_C 4 3 0.254480 0.254480 7.43 0 P
Trait US_V 4 4 3.18843 3.18843 7.72 0 P
Trait US_C 5 1 0.467651 0.467651 3.18 0 P
Trait US_C 5 2 1.73841 1.73841 7.99 0 P
Trait US_C 5 3 0.587357E-01 0.587357E-01 3.86 0 P
Trait US_C 5 4 0.145230 0.145230 1.22 0 P
Trait US_V 5 5 1.32501 1.32501 17.36 0 P
xfa1(LitTr).lit 24355 effects
LitTr XFA_V 0 1 0.100922E-02 0.100922E-02 0.00 0 ?
LitTr XFA_V 0 2 0.910417 0.910417 1.60 0 P
LitTr XFA_V 0 3 0.915803E-02 0.915803E-02 1.48 0 P
LitTr XFA_V 0 4 0.820297 0.820297 2.20 0 P
LitTr XFA_L 1 1 -1.86287 -1.86287 -3.49 -2 P
LitTr XFA_L 1 2 -0.699367 -0.699367 -2.57 2 P
LitTr XFA_L 1 3 0.202889E-01 0.202889E-01 1.01 0 P
LitTr XFA_L 1 4 -0.446902E-01 -0.446902E-01 -0.26 -2 P
xfa1(DamTr).dam 42784 effects
DamTr XFA_V 0 1 0.00000 0.00000 0.00 0 B
DamTr XFA_V 0 2 0.00000 0.00000 0.00 0 B
DamTr XFA_V 0 3 0.00000 0.00000 0.00 0 B
DamTr XFA_L 1 1 1.23296 1.23296 8.68 0 P
DamTr XFA_L 1 2 1.40235 1.40235 7.12 1 P
DamTr XFA_L 1 3 0.114810 0.114810 5.39 0 P
dam NRM 10696
xfa1(Tr).nrm(tag) 64176 effects
Tr XFA_V 0 1 0.915916 0.915916 1.96 -1 P
Tr XFA_V 0 2 1.14516 1.14516 1.14 0 P
Tr XFA_V 0 3 0.507051E-01 0.507051E-01 4.72 0 P
Tr XFA_V 0 4 0.684157 0.684157 1.92 0 P
Tr XFA_V 0 5 0.113782 0.113782 1.89 0 P
Tr XFA_L 1 1 1.36919 1.36919 5.62 0 P
Tr XFA_L 1 2 2.36771 2.36771 7.07 0 P
Tr XFA_L 1 3 0.687837E-01 0.687837E-01 1.94 0 P
Tr XFA_L 1 4 -0.149794 -0.149794 -0.58 0 P
Tr XFA_L 1 5 0.388888 0.388888 4.28 0 P
tag NRM 10696
and from part 2
10 LogL=-1415.11 S2= 1.00000 18085 df
11 LogL=-1415.11 S2= 1.00000 18085 df
12 LogL=-1415.11 S2= 1.00000 18085 df
- - - Results from analysis of wwt ywt gfw fdm fat - - -
Akaike Information Criterion 42932.23 (assuming 51 parameters).
Bayesian Information Criterion 43330.17
Model_Term Sigma Sigma Sigma/SE % C
Trait_1.age.grp IDV_V 49 0.135677E-02 0.135677E-02 2.03 0 P
Trait_2.age.grp IDV_V 49 0.976956E-03 0.976956E-03 1.21 0 P
Trait_4.age.grp IDV_V 49 0.176380E-02 0.176380E-02 1.13 0 P
Trait_5.age.grp IDV_V 49 0.221202E-03 0.221202E-03 1.72 0 P
Trait_1.sex.grp IDV_V 49 0.920182 0.920182 2.89 0 P
Trait_2.sex.grp IDV_V 49 15.4138 15.4138 3.50 0 P
Trait_3.sex.grp IDV_V 49 0.280282 0.280282 3.71 0 P
Trait_5.sex.grp IDV_V 49 1.42102 1.42102 1.80 0 P
units.us(Trait) 35200 effects
Trait US_V 1 1 7.99624 7.99624 17.09 0 P
Trait US_C 2 1 5.49377 5.49377 9.22 0 P
Trait US_V 2 2 13.8642 13.8642 13.28 0 P
Trait US_C 3 1 0.193135 0.193135 3.87 0 P
Trait US_C 3 2 0.591702 0.591702 8.08 0 P
Trait US_V 3 3 0.114192 0.114192 12.88 0 P
Trait US_C 4 1 0.882617 0.882617 2.19 0 P
Trait US_C 4 2 2.16587 2.16587 3.38 0 P
Trait US_C 4 3 0.284696 0.284696 4.32 0 P
Trait US_V 4 4 3.35060 3.35060 7.70 0 P
Trait US_C 5 1 0.490299 0.490299 3.11 0 P
Trait US_C 5 2 1.73925 1.73925 7.54 0 P
Trait US_C 5 3 0.612316E-01 0.612316E-01 3.12 0 P
Trait US_C 5 4 0.230186 0.230186 1.59 0 P
Trait US_V 5 5 1.33520 1.33520 17.51 0 P
us(LitTr).lit 19484 effects
LitTr US_V 1 1 3.54347 3.54347 8.56 0 P
LitTr US_C 2 1 1.50437 1.50437 3.31 0 P
LitTr US_V 2 2 2.00235 2.00235 2.62 0 P
LitTr US_C 3 1 -0.226319E-01 -0.226319E-01 -0.55 0 P
LitTr US_C 3 2 0.616226E-01 0.616226E-01 1.07 0 P
LitTr US_V 3 3 0.157954E-01 0.157954E-01 2.22 0 P
LitTr US_C 4 1 -0.128867 -0.128867 -0.38 0 P
LitTr US_C 4 2 -0.784696 -0.784696 -1.49 0 P
LitTr US_C 4 3 -0.456359E-01 -0.456359E-01 -0.79 0 P
LitTr US_V 4 4 0.733644 0.733644 1.82 0 P
xfa1(DamTr).dam 42784 effects
DamTr XFA_V 0 1 0.00000 0.00000 0.00 0 F
DamTr XFA_V 0 2 0.00000 0.00000 0.00 0 F
DamTr XFA_V 0 3 0.00000 0.00000 0.00 0 F
DamTr XFA_L 1 1 1.21645 1.21645 7.88 0 P
DamTr XFA_L 1 2 1.25861 1.25861 4.98 0 P
DamTr XFA_L 1 3 0.959990E-01 0.959990E-01 3.61 0 P
dam NRM 10696
us(Tr).nrm(tag) 53480 effects
Tr US_V 1 1 2.86271 2.86271 3.90 0 P
Tr US_C 2 1 3.41322 3.41322 3.71 0 P
Tr US_V 2 2 6.66960 6.66960 4.36 0 P
Tr US_C 3 1 0.154787 0.154787 2.08 0 P
Tr US_C 3 2 0.135758 0.135758 1.29 0 P
Tr US_V 3 3 0.543582E-01 0.543582E-01 4.26 0 P
Tr US_C 4 1 0.181664 0.181664 0.41 0 P
Tr US_C 4 2 -0.261889 -0.261889 -0.42 0 P
Tr US_C 4 3 0.835424E-02 0.835424E-02 0.12 0 P
Tr US_V 4 4 0.614090 0.614090 1.91 0 P
Tr US_C 5 1 0.501313 0.501313 2.64 0 P
Tr US_C 5 2 0.921811 0.921811 3.29 0 P
Tr US_C 5 3 0.234152E-01 0.234152E-01 1.00 0 P
Tr US_C 5 4 -0.160268 -0.160268 -1.11 0 P
Tr US_V 5 5 0.251928 0.251928 3.11 0 P
tag NRM 10696
Covariance/Variance/Correlation Matrix US Residual
7.996 0.5218 0.2021 0.1705 0.1501
5.494 13.86 0.4703 0.3178 0.4042
0.1931 0.5917 0.1142 0.4603 0.1568
0.8826 2.166 0.2847 3.351 0.1088
0.4903 1.739 0.6123E-01 0.2302 1.335
Covariance/Variance/Correlation Matrix US us(LitTr).lit
3.543 0.5648 -0.9566E-01 -0.7993E-01
1.504 2.002 0.3465 -0.6474
-0.2263E-01 0.6162E-01 0.1580E-01 -0.4239
-0.1289 -0.7847 -0.4564E-01 0.7336
Covariance/Variance/Correlation Matrix XFA xfa1(DamTr).dam
1.480 1.0000 1.0000 1.0000
1.531 1.584 1.0000 1.0000
0.1168 0.1208 0.9218E-02 1.0000
1.216 1.259 0.9601E-01 1.0000
Covariance/Variance/Correlation Matrix US us(Tr).nrm(tag)
2.863 0.7811 0.3924 0.1370 0.5903
3.413 6.670 0.2255 -0.1294 0.7111
0.1548 0.1358 0.5436E-01 0.4573E-01 0.2001
0.1817 -0.2619 0.8354E-02 0.6141 -0.4075
0.5013 0.9218 0.2342E-01 -0.1603 0.2519
Wald F statistics
Source of Variation NumDF F-inc
17 Tr.age 5 98.78
18 Tr.brr 15 116.48
19 Tr.sex 5 59.72
21 Tr.age.sex 4 5.01
24 at(Trait,1).age.grp 49 effects fitted ( 2 are zero)
26 at(Trait,2).age.grp 49 effects fitted ( 4 are zero)
28 at(Trait,4).age.grp 49 effects fitted ( 41 are zero)
30 at(Trait,5).age.grp 49 effects fitted ( 22 are zero)
32 at(Trait,1).sex.grp 49 effects fitted ( 3 are zero)
33 at(Trait,2).sex.grp 49 effects fitted ( 17 are zero)
35 at(Trait,3).sex.grp 49 effects fitted ( 17 are zero)
36 at(Trait,5).sex.grp 49 effects fitted ( 38 are zero)
44 Tr.grp 180 effects fitted (+ 65 singular)
43 us(LitTr).lit 19484 effects fitted ( 20 are zero)
41 xfa1(DamTr).dam 10696 effects fitted ( 384 are zero)
39 us(Tr).nrm(tag) 53480 effects fitted ( 30 are zero)
SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 11
0.19 0.53 0.62 0.41 1.03
80 possible outliers: see .res file
Finished: 21 Oct 2014 13:18:02.572 LogL Converged
Note that the 7 extra variance parameters have only increased the LogL value by 4.99
and so using US structures has not significantly improved the fit of the model.
Back
Return to index
|