Figure 1 Sample variogram of the residuals from the AR1 cross AR1 model for the Slate Hall data
# AR1 x AR1
#
1 LogL=-739.681 S2= 36034. 125 df 1.000 0.1000 0.1000
2 LogL=-714.340 S2= 28109. 125 df 1.000 0.4049 0.1870
3 LogL=-703.338 S2= 29914. 125 df 1.000 0.5737 0.3122
4 LogL=-700.371 S2= 37464. 125 df 1.000 0.6789 0.4320
5 LogL=-700.324 S2= 38602. 125 df 1.000 0.6838 0.4542
6 LogL=-700.322 S2= 38735. 125 df 1.000 0.6838 0.4579
7 LogL=-700.322 S2= 38754. 125 df 1.000 0.6838 0.4585
Final parameter values 1.0000 0.6838 0.4586
- - - Results from analysis of yield - - -
Akaike Information Criterion 1406.64 (assuming 3 parameters).
Bayesian Information Criterion 1415.13
Model_Term Gamma Sigma Sigma/SE % C
ar1(column).ar1(row) 150 effects
Residual SCA_V 150 1.000000 38754.3 5.00 0 P
column AR_R 1 0.683769 0.683769 10.80 0 P
row AR_R 1 0.458594 0.458594 5.55 0 P
Wald F statistics
Source of Variation NumDF DenDF F-inc P-inc
8 mu 1 12.8 850.88 <.001
6 variety 24 80.0 13.04 <.001
Notice: The DenDF values are calculated ignoring fixed/boundary/singular
variance parameters using algebraic derivatives.
SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 11
1.42
Finished: 24 Jan 2014 15:32:12.154 LogL Converged
# AR1 x AR1 + units
1 LogL=-740.735 S2= 33225. 125 df : 2 components constrained
2 LogL=-723.595 S2= 11661. 125 df : 1 components constrained
3 LogL=-698.498 S2= 46239. 125 df
4 LogL=-696.847 S2= 44725. 125 df
5 LogL=-696.823 S2= 45563. 125 df
6 LogL=-696.823 S2= 45753. 125 df
7 LogL=-696.823 S2= 45796. 125 df
- - - Results from analysis of yield - - -
Akaike Information Criterion 1401.65 (assuming 4 parameters).
Bayesian Information Criterion 1412.96
Model_Term Gamma Sigma Sigma/SE % C
units IDV_V 150 0.106152 4861.06 2.72 0 P
ar1(column).ar1(row) 150 effects
Residual SCA_V 150 1.000000 45793.4 2.74 0 P
column AR_R 1 0.843791 0.843791 12.33 0 P
row AR_R 1 0.682682 0.682682 6.68 0 P
Wald F statistics
Source of Variation NumDF DenDF F-inc P-inc
8 mu 1 3.5 259.83 <.001
6 variety 24 75.7 10.21 <.001
Notice: The DenDF values are calculated ignoring fixed/boundary/singular
variance parameters using algebraic derivatives.
9 units 150 effects fitted
SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 11
1.08
Finished: 24 Jan 2014 15:53:47.858 LogL Converged
The lattice analysis (with recovery of between block information) is
presented below. This variance model is not competitive with the
preceding spatial models. The models can be formally compared using
the BIC values for example.
# IB analysis
1 LogL=-734.184 S2= 26778. 125 df
2 LogL=-720.060 S2= 16591. 125 df
3 LogL=-711.119 S2= 11173. 125 df
4 LogL=-707.937 S2= 8562.4 125 df
5 LogL=-707.786 S2= 8091.2 125 df
6 LogL=-707.786 S2= 8061.8 125 df
7 LogL=-707.786 S2= 8061.8 125 df
- - - Results from analysis of yield - - -
Akaike Information Criterion 1423.57 (assuming 4 parameters).
Bayesian Information Criterion 1434.88
Approximate stratum variance decomposition
Stratum Degrees-Freedom Variance Component Coefficients
Rep 5.00 266657. 25.0 5.0 5.0 1.0
RowBlk 24.00 74887.8 0.0 4.3 0.0 1.0
ColBlk 23.66 71353.5 0.0 0.0 4.3 1.0
Residual Variance 72.34 8061.81 0.0 0.0 0.0 1.0
Model_Term Gamma Sigma Sigma/SE % C
Rep IDV_V 6 0.528714 4262.39 0.62 0 P
RowBlk IDV_V 30 1.93444 15595.1 3.06 0 P
ColBlk IDV_V 30 1.83725 14811.6 3.04 0 P
units 150 effects
Residual SCA_V 150 1.000000 8061.81 6.01 0 P
Wald F statistics
Source of Variation NumDF DenDF F-inc P-inc
8 mu 1 5.0 1216.29 <.001
6 variety 24 79.3 8.84 <.001
Notice: The DenDF values are calculated ignoring fixed/boundary/singular
variance parameters using algebraic derivatives.
1 Rep 6 effects fitted
2 RowBlk 30 effects fitted
3 ColBlk 30 effects fitted
Finished: 24 Jan 2014 15:53:48.347 LogL Converged
Finally, we present portions of the .pvs files to illustrate the
prediction facility of ASReml . The first five and last three
variety means are presented for illustration.
The overall SED printed is the square root
of the average variance of difference between the variety means.
The two spatial analyses
have a range of SEDs which are available if the !SED
qualifier is used.
All variety comparisons have the same SED
from the third analysis as the design is a balanced lattice square. The F-statistic
statistics
for the spatial models are greater than for the lattice analysis. We note
the F-statistic for the AR1 cross AR1 + units model is smaller than the
F-statistic for the AR1 cross AR1.
Predicted values of yield
#AR1 x AR1
variety Predicted_Value Standard_Error Ecode
1.0000 1257.9763 64.6146 E
2.0000 1501.4483 64.9783 E
3.0000 1404.9874 64.6260 E
4.0000 1412.5674 64.9027 E
5.0000 1514.4764 65.5889 E
. . .
23.0000 1311.4888 64.0767 E
24.0000 1586.7840 64.7043 E
25.0000 1592.0204 63.5939 E
SED: Overall Standard Error of Difference 59.05
#AR1 x AR1 + units
variety Predicted_Value Standard_Error Ecode
1.0000 1245.5843 97.8591 E
2.0000 1516.2331 97.8473 E
3.0000 1403.9863 98.2398 E
4.0000 1404.9202 97.9875 E
5.0000 1471.6197 98.3607 E
. . .
23.0000 1316.8726 98.0402 E
24.0000 1557.5278 98.1272 E
25.0000 1573.8920 97.9803 E
SED: Overall Standard Error of Difference 60.51
# IB
Rep is ignored in the prediction
RowBlk is ignored in the prediction
ColBlk is ignored in the prediction
variety Predicted_Value Standard_Error Ecode
1.0000 1283.5870 60.1994 E
2.0000 1549.0133 60.1994 E
3.0000 1420.9307 60.1994 E
4.0000 1451.8554 60.1994 E
5.0000 1533.2749 60.1994 E
. . .
23.0000 1329.1088 60.1994 E
24.0000 1546.4699 60.1994 E
25.0000 1630.6285 60.1994 E
SED: Overall Standard Error of Difference 62.02
Notice the differences in SE and SED associated with the
various models. Choosing a model on the basis of smallest SE or
SED is not recommended because the model is not necessarily
fitting the variability present in the data.
Summary of models for the Slate Hall data
| REML | number of | |
|
model | log-likelihood | parameters | F-statistic | SED
|
|
AR1 cross AR1 | -700.32 | 3 | 13.04 | 59.0
|
AR1 cross AR1 + units | -696.82 | 4 | 10.22 | 60.5
|
IB | -707.79 | 4 | 8.84 | 62.0
|
The predict statement included the qualifier
!TWOSTAGEWEIGHTS.
This generates an extra table in the .pvs file which we
now display for each model.
Predicted values with Effective Replication assuming
Variance= 38754.26
Heron: 1 1257.98 22.1504
Heron: 2 1501.45 20.6831
Heron: 3 1404.99 22.5286
Heron: 4 1412.57 22.7623
Heron: 5 1514.48 21.1830
. . . .
Heron: 25 1592.02 26.0990
Predicted values with Effective Replication assuming
Variance= 45796.58
Heron: 1 1245.58 23.8842
Heron: 2 1516.24 22.4423
Heron: 3 1403.99 24.1931
Heron: 4 1404.92 24.0811
Heron: 5 1471.61 23.2995
. . . .
Heron: 25 1573.89 26.0505
Predicted values with Effective Replication assuming
Variance= 8061.808
Heron: 1 1283.59 4.03145
Heron: 2 1549.01 4.03145
Heron: 3 1420.93 4.03145
Heron: 4 1451.86 4.03145
Heron: 5 1533.27 4.03145
. . . .
Heron: 25 1630.63 4.03145
The value of 4 for the IB analysis is clearly reasonable given
there are 6 actual replicates but this analysis has used up
48 degrees of freedom for the rowblk and colblk
effects. The values from the spatial analyses are similar
but much higher reflecting the gain in accuracy from the
spatial analysis.
Back
Return to index