Multivariate Sire Dam model
tag
sire 92 !I
dam 3561 !I
grp 49
sex
brr 4
litter 4871
age wwt !M0 ywt !M0 # !M0 recodes zeros as missing values
gfw !M0 fdm !M0 fat !M0
coop.fmt
wwt ~ mu age brr sex age.sex !r sire dam lit age.grp sex.grp !f grp
Table 1. REML estimates of a subset of the variance parameters for each trait for the genetic example, expressed as a ratio to their asymptotic s.e.
term | wwt | ywt | gfw | fdm | fat
| sire | 3.68 | 3.57 | 3.95 | 1.92 | 1.92
| dam | 6.25 | 4.93 | 2.78 | 0.37 | 0.05
| litter | 8.79 | 0.99 | 2.23 | 1.91 | 0.00
| age.grp | 2.29 | 1.39 | 0.31 | 1.15 | 1.74
| sex.grp | 2.90 | 3.43 | 3.70 | - | 1.83
|
Wald tests of the fixed effects for each trait for the genetic example,
term | wwt | ywt | gfw | fdm | fat
| age | 331.3 | 67.1 | 52.4 | 2.6 | 7.5
| brr | 554.6 | 73.4 | 14.9 | 0.3 | 13.9
| sex | 196.1 | 123.3 | 0.2 | 2.9 | 0.6
| age.sex | 10.3 | 1.7 | 1.9 | - | 5.0
|
Tables 1 and 2 present the summary of these
analyses. Fibre diameter was measured on only 2 female lambs and so
interactions with sex were not fitted. The dam variance
component was quite small for both fibre diameter and fat. The REML
estimate of the variance component associated with litters was
effectively zero for fat.
Thus in the multivariate analysis we consider fitting the following
models to the sire, dam and litter effects,
Var(us) | = | Σs ⊗ I92
Var(ud) | = | Σd ⊗ I3561
Var(ul) | = | Σl ⊗ I4891
where Σs (5 by 5), Σd (3 by 3) and
Σl (4 by 4) are positive definite symmetric
matrices corresponding to the between traits variance matrices for
sires, dams and litters respectively. The variance matrix for dams
does not involve fibre diameter and fat depth, while the variance
matrix for litters does not involve fat depth. The effects in each
of the above vectors are ordered levels within traits. Lastly we
assume that the residual variance matrix is given by
Σe ⊗ I7043
Table 3 presents the sequence variance models fitted to
each of the four random terms sire, dam, litter and
error in the ASReml job
!WORK 1 !CONTINUE !RENAME !ARG 1 2 3
Multivariate Sire Dam model
tag
sire 92 !I
dam 3561 !I
grp 49
sex
brr 4
litter 4871
age wwt !m0 ywt !m0 # !M0 identifies missing values
gfw !m0 fdm !m0 fat !m0
coop.fmt !DOPATH $1 !MAXIT 20
!SUBSET DamTr Trait 1 2 3 0 0
!SUBSET LitTr Trait 1 2 3 4 0
wwt ywt gfw fdm fat ~ Trait Tr.age Tr.brr Tr.sex Tr.age.sex,
!PATH 1 // !r xfa1(Tr).sire xfa1(DamTr).dam xfa1(LitTr).litter,
!PATH 2 // !r us(Tr).sire xfa1(DamTr).dam us(LitTr).litter,
!PATH 0 // at(Trait,1,2,4,5).age.grp at(Trait,1,2,3,5).sex.grp !f Tr.grp
residual units.us(Trait)
Table 3. Variance models fitted for each part of the ASReml job in the analysis of the genetic example
term | matrix | !PATH 1 | !PATH 2
| sire | Σs | FA1 | US
| dam | Σd | FA1 | XFA1
| litter | Σl | FA1 | US
| error | Σe | US | US
|
In !PATH 1, the error variance model is taken to be unstructured using
the starting values are from the sample covariance matrix of the
data. For incomplete data the matrix so obtained may not, in general
be positive definite. The command to run
!PATH 1
is
asreml -n mt 1
The Loglikelihood from this run is -20000-1426.18.
The results from this analysis can be automatically used by ASReml
for the next part, if the next part is run immediately, or if the
.rsv is copied prior to running the
next part. That is, we add the !PATH 2 coding to the job,
copy mt1.rsv to mt2.rsv so that when we run !PATH 2 it starts from
where !PATH 1 finished, and run the job using
asreml -cnrw1 mt 2
The Loglikelihood from this run is -20000-1419.99.
ASReml has 3 forms of fitting the factor analytic model. The fa() form uses the correlation
scale and really only works for a single FA factor. The xfa() form used here is generally preferred.
Note the 4 fitted matrices for the sire, dam and litter components:
Covariance/Variance/Correlation Matrix US Residual
9.485 0.5689 0.2375 0.1494 0.2172
7.361 17.65 0.4317 0.1596 0.4618
0.2766 0.6859 0.1430 0.3499 0.1665
0.8655 1.261 0.2489 3.538 0.4268E-01
0.8300 2.407 0.7815E-01 0.9963E-01 1.540
Covariance/Variance/Correlation Matrix XFA xfa1(Tr).sire
0.5808 0.6878 0.4472E-01 -0.6127E-01 0.4116 0.7061
0.6515 1.545 0.6170E-01 -0.8452E-01 0.5678 0.9741
0.4204E-02 0.9459E-02 0.1522E-01 -0.5496E-02 0.3692E-01 0.6334E-01
-0.1976E-01 -0.4446E-01 -0.2869E-03 0.1791 -0.5058E-01 -0.8677E-01
0.5808E-01 0.1307 0.8433E-03 -0.3963E-02 0.3428E-01 0.5830
0.5381 1.211 0.7813E-02 -0.3672E-01 0.1079 1.0000
Covariance/Variance/Correlation Matrix XFA xfa1(DamTr).dam
2.168 0.9377 0.8010 0.9377
2.296 2.765 0.8542 1.0000
0.1736 0.2091 0.2167E-01 0.8542
1.381 1.663 0.1257 1.0000
Covariance/Variance/Correlation Matrix XFA xfa1(LitTr).litter
3.508 0.5418 -0.2023 0.2412E-01 -0.9972
1.417 1.950 -0.1102 0.1314E-01 -0.5433
-0.4601E-01 -0.1869E-01 0.1474E-01 -0.4908E-02 0.2029
0.4528E-01 0.1840E-01 -0.5972E-03 1.004 -0.2419E-01
-1.868 -0.7588 0.2463E-01 -0.2424E-01 1.0000
The hign correlations among dam effects for the traits indicate that it may not be
possible to fit an unstructured variance matrix for this term. Indeed,
ASReml cannot form a positive definite unstructured dam matrix. The dam components are substantially
larger than the sire components indicating a large mjaternal environment effect on
wwt, ywt and gfw.
Migrating the tag and litter terms to unstructured only increased the LogL by 6.19
but added 7 variance parameters, so the fit is not significantly improved.
Note that by running these models in order, and using !CONTINUE,
ASReml uses the parameter estimates from the previous model as starting values for
the next model.
A portion of the final output file is
11 LogL=-1419.99 S2= 1.00000 18085 df
12 LogL=-1419.99 S2= 1.00000 18085 df
Covariance/Variance/Correlation Matrix US Residual
9.463 0.5690 0.2356 0.1639 0.2183
7.329 17.54 0.4242 0.2498 0.4639
0.2728 0.6688 0.1417 0.3995 0.1680
0.9625 1.997 0.2870 3.643 0.4881E-01
0.8333 2.411 0.7851E-01 0.1156 1.541
Covariance/Variance/Correlation Matrix US us(Tr).sire
0.5941 0.7042 0.2965 0.2016 0.2698
0.6740 1.542 0.1333E-01 -0.1250 0.5727
0.2798E-01 0.2027E-02 0.1499E-01 0.1069 -0.4610E-02
0.6185E-01 -0.6180E-01 0.5211E-02 0.1585 -0.6350
0.3783E-01 0.1293 -0.1027E-03 -0.4598E-01 0.3308E-01
Covariance/Variance/Correlation Matrix XFA at(Tr,1).dam
2.154 1.0000 0.8016 1.0000
2.210 2.268 0.8016 1.0000
0.1606 0.1648 0.1864E-01 0.8016
1.468 1.506 0.1094 1.0000
Covariance/Variance/Correlation Matrix US at(Tr,1).lit
3.555 0.5098 -0.1174 -0.4092E-01
1.542 2.574 0.2020 -0.5249
-0.3059E-01 0.4479E-01 0.1910E-01 -0.3201
-0.7311E-01 -0.7981 -0.4192E-01 0.8981
Note the XFA matrix have an extra (fourth) row/column. This last row/column pertains
to the 'factor' and relates to the other rows via the factor 'loadings'.
In the .res file is reported an eigen analysis of these
four variance structures.
Eigen Analysis of US matrix for Residual
Eigen values 22.456 5.213 3.394 1.160 0.103
Percentage 69.468 16.126 10.501 3.588 0.318
1 0.4970 -0.8664 0.0147 0.0469 0.0027
2 0.8509 0.4764 -0.1321 -0.1745 -0.0327
3 0.0335 0.0230 0.0585 -0.0047 0.9974
4 0.1170 0.0878 0.9842 0.0771 -0.0633
5 0.1187 0.1194 -0.1013 0.9805 0.0039
Eigen Analysis of US matrix for us(Tr).sire
Eigen values 1.902 0.304 0.114 0.012 0.010
Percentage 81.190 12.978 4.855 0.533 0.444
1 0.4580 0.7479 0.4687 -0.1059 0.0065
2 0.8859 -0.3645 -0.2770 0.0269 -0.0694
3 0.0077 0.0794 0.0846 0.9506 -0.2880
4 -0.0170 0.5256 -0.8015 0.1074 0.2635
5 0.0710 -0.1588 0.2323 0.2701 0.9180
Eigen Analysis of XFA matrix for xfa1(DamTr).dam
Eigen values 5.434 0.007 -0.000 -0.000
Percentage 99.878 0.122 -0.000 -0.000
1 0.6296 0.0296 0.4766 0.4766
2 0.6461 0.0304 -0.7590 -0.7590
3 0.0470 -0.9989 -0.0000 -0.0000
4 0.4290 0.0202 0.4437 0.4437
Eigen Analysis of US matrix for at(Tr,1).lit
Eigen values 4.758 1.808 0.464 0.016
Percentage 67.523 25.662 6.583 0.233
1 0.7840 0.5799 0.2207 0.0169
2 0.6048 -0.6336 -0.4823 -0.0173
3 0.0019 -0.0377 0.0161 0.9992
4 -0.1399 0.5107 -0.8476 0.0333
Estimating genetic parameters
The REML estimates of all the variance matrices except for
the dam components are
positive definite. Heritabilities for each trait can be calculated using the VPREDICT/ .pin file
facility of ASReml.
The heritability is given by
h2 = σ2A/σ2P
where σ2P is the phenotypic variance given by
σ2P= σ2s+ σ2d+ σ2l+ σ2e
recalling that
σ2s = 0.25 σ2A
σ2d = 0.25 σ2A + σ2m
In the half-sib analysis we only use the estimate of additive genetic
variance from the sire variance component. The ASReml .pin
file is presented below along with the output from the following
command
asreml -p mt2
V DamVC dam;xfa1 # Convert XFA parameters to variance components
F AddVar sire;us * 4 # Convert sire variance to genetic variance
F Phen units[1:6] + sire[1:6] + DamVC + litter[1:6]
F Phen units[7:10] + sire[7:10] + litter[7:10]
F Phen units[11:15] + sire[11:15]
R PhenCor Phen
R GenCor AddVar
H HeritWWT AddVar[1] Phen[1]
H HeritYWT AddVar[3] Phen[3]
H HeritGFW AddVar[6] Phen[6]
H HeritFDM AddVar[10] Phen[10]
H HeritFAT AddVar[15] Phen[15]
ASReml 4.1 [01 Apr 2014] Multivariate Sire Dam model
mtsire02.pvc created 21 Oct 2014 14:23:22.023
- - - Results from analysis of wwt ywt gfw fdm fat - - -
1 Trait_1.age.grp 0.135181E-02 0.669213E-03
2 Trait_2.age.grp 0.101813E-02 0.821073E-03
3 Trait_4.age.grp 0.176601E-02 0.156284E-02
4 Trait_5.age.grp 0.209288E-03 0.124576E-03
5 Trait_1.sex.grp 0.920264 0.318430
6 Trait_2.sex.grp 15.3787 4.39391
7 Trait_3.sex.grp 0.279368 0.753013E-01
8 Trait_5.sex.grp 1.44050 0.800278
units.us(Trait) 35200 effects
9 units.us(Trait);us(Trait) V 1 1 9.46254 0.284160
10 units.us(Trait);us(Trait) C 2 1 7.32955 0.356496
11 units.us(Trait);us(Trait) V 2 2 17.5378 0.646913
12 units.us(Trait);us(Trait) C 3 1 0.272792 0.325139E-01
13 units.us(Trait);us(Trait) C 3 2 0.668806 0.476358E-01
14 units.us(Trait);us(Trait) V 3 3 0.141722 0.597479E-02
15 units.us(Trait);us(Trait) C 4 1 0.962553 0.333063
16 units.us(Trait);us(Trait) C 4 2 1.99706 0.547140
17 units.us(Trait);us(Trait) C 4 3 0.287033 0.565026E-01
18 units.us(Trait);us(Trait) V 4 4 3.64285 0.404761
19 units.us(Trait);us(Trait) C 5 1 0.833307 0.968962E-01
20 units.us(Trait);us(Trait) C 5 2 2.41105 0.124089
21 units.us(Trait);us(Trait) C 5 3 0.785061E-01 0.107543E-01
22 units.us(Trait);us(Trait) C 5 4 0.115625 0.947746E-01
23 units.us(Trait);us(Trait) V 5 5 1.54054 0.469248E-01
us(Tr).sire 460 effects
24 us(Tr).sire;us(Tr) V 1 1 0.594134 0.161449
25 us(Tr).sire;us(Tr) C 2 1 0.674027 0.211958
26 us(Tr).sire;us(Tr) V 2 2 1.54206 0.396416
27 us(Tr).sire;us(Tr) C 3 1 0.279826E-01 0.182893E-01
28 us(Tr).sire;us(Tr) C 3 2 0.202626E-02 0.289466E-01
29 us(Tr).sire;us(Tr) V 3 3 0.149924E-01 0.373875E-02
30 us(Tr).sire;us(Tr) C 4 1 0.620564E-01 0.110815
31 us(Tr).sire;us(Tr) C 4 2 -0.615623E-01 -0.380000
32 us(Tr).sire;us(Tr) C 4 3 0.526314E-02 0.194931E-01
33 us(Tr).sire;us(Tr) V 4 4 0.158546 0.861663E-01
34 us(Tr).sire;us(Tr) C 5 1 0.378333E-01 0.406810E-01
35 us(Tr).sire;us(Tr) C 5 2 0.129334 0.663251E-01
36 us(Tr).sire;us(Tr) C 5 3 -0.103158E-03 -0.200000E-01
37 us(Tr).sire;us(Tr) C 5 4 -0.459500E-01 -1.51000
38 us(Tr).sire;us(Tr) V 5 5 0.330789E-01 0.160577E-01
xfa1(DamTr).dam 14244 effects
39 xfa1(DamTr).dam;xfa1(DamTr) V 0 1 0.559130E-02 0.559130
40 xfa1(DamTr).dam;xfa1(DamTr) V 0 2 0.00000 0.00000
41 xfa1(DamTr).dam;xfa1(DamTr) V 0 3 0.666005E-02 0.528575E-02
42 xfa1(DamTr).dam;xfa1(DamTr) L 1 1 1.46524 0.180671
43 xfa1(DamTr).dam;xfa1(DamTr) L 1 2 1.50712 0.207022
44 xfa1(DamTr).dam;xfa1(DamTr) L 1 3 0.109589 0.216579E-01
us(LitTr).litter 19484 effects
45 us(LitTr).litter;us(LitTr) V 1 1 3.55525 0.415333
46 us(LitTr).litter;us(LitTr) C 2 1 1.54283 0.464708
47 us(LitTr).litter;us(LitTr) V 2 2 2.56955 0.805502
48 us(LitTr).litter;us(LitTr) C 3 1 -0.305637E-01 -0.720000
49 us(LitTr).litter;us(LitTr) C 3 2 0.444459E-01 0.608848E-01
50 us(LitTr).litter;us(LitTr) V 3 3 0.190719E-01 0.781635E-02
51 us(LitTr).litter;us(LitTr) C 4 1 -0.731186E-01 -0.220000
52 us(LitTr).litter;us(LitTr) C 4 2 -0.798163 -1.56000
53 us(LitTr).litter;us(LitTr) C 4 3 -0.419291E-01 -0.760000
54 us(LitTr).litter;us(LitTr) V 4 4 0.898030 0.392153
55 DamVC 2.1525 0.33431
56 DamVC 2.2083 0.36993
57 DamVC 2.2714 0.62438
58 DamVC 0.16057 0.32569E-01
59 DamVC 0.16516 0.46275E-01
60 DamVC 0.18670E-01 0.58989E-02
61 AddVar 24 2.3765 0.64602
62 AddVar 25 2.6961 0.84894
63 AddVar 26 6.1682 1.5843
64 AddVar 27 0.11193 0.73304E-01
65 AddVar 28 0.81050E-02 0.11051
66 AddVar 29 0.59970E-01 0.14970E-01
67 AddVar 30 0.24823 0.44511
68 AddVar 31 -0.24625 0.64456
69 AddVar 32 0.21053E-01 0.76801E-01
70 AddVar 33 0.63418 0.34523
71 AddVar 34 0.15133 0.16341
72 AddVar 35 0.51734 0.26553
73 AddVar 36 -0.41263E-03 0.23627E-01
74 AddVar 37 -0.18380 0.12146
75 AddVar 38 0.13232 0.64267E-01
76 Phen 9 15.764 0.31272
77 Phen 10 11.755 0.37473
78 Phen 11 23.921 0.63109
79 Phen 12 0.43079 0.33010E-01
80 Phen 13 0.88044 0.44371E-01
81 Phen 14 0.19446 0.54925E-02
82 Phen 15 0.95149 0.29837
83 Phen 16 1.1373 0.37654
84 Phen 17 0.25037 0.37270E-01
85 Phen 18 4.6994 0.22536
86 Phen 19 0.87114 0.10440
87 Phen 20 2.5404 0.13825
88 Phen 21 0.78403E-01 0.12041E-01
89 Phen 22 0.69675E-01 0.97927E-01
90 Phen 23 1.5736 0.48632E-01
PhenCo 2 1 = Phen 77/SQR[Phen 76*Phen 78]= 0.6053 0.0110
PhenCo 3 1 = Phen 79/SQR[Phen 76*Phen 81]= 0.2460 0.0174
PhenCo 3 2 = Phen 80/SQR[Phen 78*Phen 81]= 0.4082 0.0175
PhenCo 4 1 = Phen 82/SQR[Phen 76*Phen 85]= 0.1105 0.0343
PhenCo 4 2 = Phen 83/SQR[Phen 78*Phen 85]= 0.1073 0.0352
PhenCo 4 3 = Phen 84/SQR[Phen 81*Phen 85]= 0.2619 0.0369
PhenCo 5 1 = Phen 86/SQR[Phen 76*Phen 90]= 0.1749 0.0203
PhenCo 5 2 = Phen 87/SQR[Phen 78*Phen 90]= 0.4141 0.0180
PhenCo 5 3 = Phen 88/SQR[Phen 81*Phen 90]= 0.1417 0.0214
PhenCo 5 4 = Phen 89/SQR[Phen 85*Phen 90]= 0.0256 0.0360
GenCor 2 1 = AddVa 62/SQR[AddVa 61*AddVa 63]= 0.7042 0.1026
GenCor 3 1 = AddVa 64/SQR[AddVa 61*AddVa 66]= 0.2965 0.1720
GenCor 3 2 = AddVa 65/SQR[AddVa 63*AddVa 66]= 0.0133 0.1811
GenCor 4 1 = AddVa 67/SQR[AddVa 61*AddVa 70]= 0.2022 0.3515
GenCor 4 2 = AddVa 68/SQR[AddVa 63*AddVa 70]= -0.1245 0.3249
GenCor 4 3 = AddVa 69/SQR[AddVa 66*AddVa 70]= 0.1080 0.3871
GenCor 5 1 = AddVa 71/SQR[AddVa 61*AddVa 75]= 0.2699 0.2725
GenCor 5 2 = AddVa 72/SQR[AddVa 63*AddVa 75]= 0.5726 0.2023
GenCor 5 3 = AddVa 73/SQR[AddVa 66*AddVa 75]= -0.0046 0.2653
GenCor 5 4 = AddVa 74/SQR[AddVa 70*AddVa 75]= -0.6345 0.3773
HeritWWT = AddVar 2 61/Phen 9 76= 0.1508 0.0396
HeritYWT = AddVar 2 63/Phen 11 78= 0.2579 0.0624
HeritGFW = AddVar 2 66/Phen 14 81= 0.3084 0.0716
HeritFDM = AddVar 3 70/Phen 18 85= 0.1349 0.0717
HeritFAT = AddVar 3 75/Phen 23 90= 0.0841 0.0402
Notice: The parameter estimates are followed by
their approximate standard errors.
Note that the maternal genetic correlations have values much larger than 1.
A better approach would be to use the
animal model
where we conclude there is no maternal effect for YWT and GFW.
Back
Return to index
| |